Skip to main content
Log in

Modeling Anisotropic Ductile Fracture Behavior of Sheet Metals Considering Non-directionality of Equi-Biaxial Tensile Fracture

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

An accurate characterization of fracture behavior under pure shear, uniaxial tension, plane strain tension, and equi-biaxial tension plays a vital role in high-fidelity numerical simulation of the sheet metal forming. From a plastic deformation viewpoint, the non-directionality of the equi-biaxial tensile fracture is the inherent characteristic of sheet metal. However, little attention has been paid to modeling the non-directionality of the equi-biaxial fracture strain. This paper develops a new anisotropic ductile fracture model by including an empirical weight function into the DF2014-based fracture criterion to consider the non-directionality of the equi-biaxial tensile fracture. Then, the proposed model is utilized to depict the anisotropic ductile fracture behavior of DP980 steel, AA6082-T6 aluminum alloy, and Ti-6Al-4 V titanium alloy to verify its fracture predictability under various stress states. The prediction results are compared with the DF2014 and DF2016-based criteria. The results show that the proposed model correctly captures the non-directionality of equi-biaxial tensile fracture strain and depicts the anisotropic ductile behavior of these metals with high accuracy under proportional loading conditions. Meanwhile, the proposed model provided a similar fracture prediction accuracy to the DF2016-based criterion for different metal sheets, which indicated that the fracture predictability of this model had been successfully enhanced. In addition, finite element analysis for the square cup drawing test of AA6016-AC200 alloy is conducted in ABAQUS/Explicit to validate its performance under non-proportional loading conditions. The simulation results of the punch force–stroke curve and fracture shape in good agreement with the experimental measurements. The comparison study demonstrates that the proposed anisotropic ductile fracture model provides quite accurate predictability in depicting the anisotropic ductile fracture behavior of different metallic materials. Accordingly, the proposed model is recommended to be applied in FE simulation to improve the reliability and accuracy of numerical design and optimization of metal sheets product and forming process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. K. Qvale, O.S. Hopperstad, O. Reiso, U.H. Tundal, C.D. Marioara, and T. Børvik, An Experimental Study on Pre-Stretched Double-Chamber 6000-Series Aluminium Profiles Subjected to Quasi-Static and Dynamic Axial Crushing, Thin Walled Struct., 2021, 158, p 107160.

    Article  Google Scholar 

  2. M.B. Gorji, and D. Mohr, Predicting Shear Fracture of Aluminum 6016-T4 during DEEP DRAWING: COMBINING Yld-2000 Plasticity with Hosford Coulomb Fracture Model, Int. J. Mech. Sci., 2018, 137, p 105–120.

    Article  Google Scholar 

  3. A. Pineau, A.A. Benzerga, and T. Pardoen, Failure of Metals I: Brittle and Ductile Fracture, Acta Mater., 2016, 107, p 424–483.

    Article  CAS  ADS  Google Scholar 

  4. A.E. Tekkaya, P.O. Bouchard, S. Bruschi, and C.C. Tasan, Damage in Metal Forming, CIRP Ann., 2020, 69(2), p 600–623.

    Article  Google Scholar 

  5. T. Xu, F. Li, X. Wang, and G. Zhang, Characterization of Anisotropic Fracture Behavior of 7075-T6 Aluminum Alloy Sheet under Various Stress States, J. Mater. Eng. Perform., 2022 https://doi.org/10.1007/s11665-022-07327-w

    Article  Google Scholar 

  6. A.L. Gurson, Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media, J. Eng. Mater. Technol., 1977, 99(1), p 2–15.

    Article  Google Scholar 

  7. C.C. Chu, and A. Needleman, Void Nucleation Effects in Biaxially Stretched Sheets, J. Eng. Mater. Technol., 1980, 102(3), p 249–256.

    Article  Google Scholar 

  8. V. Tvergaard and A. Needleman, Analysis of the Cup-Cone Fracture in a Round Tensile Bar, Acta Metall., 1984, 32(1), p 157–169.

    Article  Google Scholar 

  9. L. Xue, Constitutive Modeling of Void Shearing Effect in Ductile Fracture of Porous Materials, Eng. Fract. Mech., 2008, 75(11), p 3343–3366.

    Article  Google Scholar 

  10. K. Nahshon and J.W. Hutchinson, Modification of the Gurson Model for Shear Failure, Eur. J. Mech. A. Solids, 2008, 27(1), p 1–17.

    Article  ADS  Google Scholar 

  11. J. Lee, H. Jong Bong, H. Park, and D. Kim, Micromechanics-Based Modeling of Plastic and Ductile Fracture of Aluminum Alloy 2024-O, Eng. Fract. Mech., 2022, 261, p 108213.

    Article  Google Scholar 

  12. W.T. Li, Z.Y. Cai, H. Li, L.F. Peng, X.M. Lai, and M.W. Fu, The modified GTN-Thomason Criterion for Modelling of Ductile Fracture Considering Shear Factor and Size Effect in Micro-Scaled Plastic Deformation, Int. J. Mech. Sci., 2021, 204, p 106540.

    Article  Google Scholar 

  13. Z. He, H. Zhu, and Y. Hu, An Improved Shear Modified GTN Model for Ductile Fracture of Aluminium Alloys under Different Stress States and its Parameters Identification, Int. J. Mech. Sci., 2021, 192, p 106081.

    Article  Google Scholar 

  14. G. Li and S.S. Cui, A Review on Theory and Application of Plastic Meso-Damage Mechanics, Theor. Appl. Fract. Mech., 2020, 109, p 102686.

    Article  Google Scholar 

  15. A.A. Benzerga, J.B. Leblond, A. Needleman, and V. Tvergaard, Ductile Failure Modeling, Int. J. Fract., 2016, 201(1), p 29–80.

    Article  Google Scholar 

  16. G. Rousselier, Finite Deformation Constitutive Relations Including Ductile Fracture Damage, Three-Dimensional Constitutive Relations and Ductile Fracture Editioned., S. Nemat-Nasser, Ed., North Holland Publishing Company, 1981, p. 331–355

  17. G. Rousselier, Porous Plasticity Revisited: Macroscopic and Multiscale Modeling, Int. J. Plast., 2021, 136, p 102881.

    Article  CAS  Google Scholar 

  18. J. Lemaitre, A Continuous Damage Mechanics Model for Ductile Fracture, J. Eng. Mater. Technol., 1985, 107(1), p 83–89.

    Article  Google Scholar 

  19. M. Brünig, S. Gerke, and M. Schmidt, Damage and Failure at Negative stress Triaxialities: Experiments, Modeling and Numerical Simulations, Int. J. Plast., 2018, 102, p 70–82.

    Article  Google Scholar 

  20. T.S. Cao, J.M. Gachet, P. Montmitonnet, and P.O. Bouchard, A Lode-Dependent Enhanced Lemaitre Model for Ductile Fracture Prediction at Low Stress Triaxiality, Eng. Fract. Mech., 2014, 124–125, p 80–96.

    Article  Google Scholar 

  21. M. Brünig, S. Gerke, and V. Hagenbrock, Stress-state-Dependence of Damage Strain Rate Tensors Caused by Growth and Coalescence of Micro-Defects, Int. J. Plast., 2014, 63, p 49–63.

    Article  Google Scholar 

  22. Y.B. Bao and T. Wierzbicki, On Fracture Locus in the Equivalent Strain and Stress Triaxiality Space, Int. J. Mech. Sci., 2004, 46(1), p 81–98.

    Article  Google Scholar 

  23. H. Zhang, M. Diehl, F. Roters, and D. Raabe, A Virtual Laboratory Using High Resolution Crystal Plasticity Simulations to Determine the Initial Yield Surface for Sheet Metal Forming Operations, Int. J. Plast., 2016, 80, p 111–138.

    Article  CAS  Google Scholar 

  24. D. Li, H. Wu, X. Zhan, Z. Chang, and J. Chen, A New Ductile Fracture Model for Edge Cracking Prediction of Ultra-High Strength Steel Considering Damage Accumulation in Blanking Process, J. Mater. Eng. Perform., 2022, 31, p 6880–6890.

    Article  CAS  Google Scholar 

  25. L. Dong, S.H. Li, and J. He, Ductile Fracture Initiation of Anisotropic Metal Sheets, J. Mater. Eng. Perform., 2017, 26(7), p 3285–3298.

    Article  CAS  Google Scholar 

  26. Q. Hu, F.F. Zhang, X.F. Li, and J. Chen, Overview on the Prediction Models for Sheet Metal Forming Failure: Necking and Ductile Fracture, Acta Mech. Solida Sin., 2018, 31(3), p 259–289.

    Article  Google Scholar 

  27. Y. Lou, H. Huh, S. Lim, and K. Pack, New Ductile Fracture Criterion for Prediction of Fracture Forming Limit Diagrams of Sheet Metals, Int. J. Solids Struct., 2012, 49(25), p 3605–3615.

    Article  CAS  Google Scholar 

  28. Y. Lou, J.W. Yoon, and H. Huh, Modeling of Shear Ductile Fracture Considering a Changeable Cut-Off Value for Stress Triaxiality, Int. J. Plast., 2014, 54, p 56–80.

    Article  CAS  Google Scholar 

  29. Y.S. Lou, L. Chen, T. Clausmeyer, A.E. Tekkaya, and J.W. Yoon, Modeling of Ductile Fracture from Shear to Balanced Biaxial Tension for Sheet Metals, Int. J. Solids Struct., 2017, 112, p 169–184.

    Article  CAS  Google Scholar 

  30. F.F. Li and G. Fang, Establishment and Verification of Two-Component Ductile Fracture Criteria with High Estimation Accuracy, Eng. Fract. Mech., 2018, 204, p 221–234.

    Article  Google Scholar 

  31. X.Q. Shang, Z.S. Cui, and M.W. Fu, A Ductile Fracture Model Considering Stress State and Zener-Hollomon Parameter for hot Deformation of Metallic Materials, Int. J. Mech. Sci., 2018, 144, p 800–812.

    Article  Google Scholar 

  32. J. Cao, Z. Sun, L. Huang, and Z. Yin, A Unified Model of Ductile Fracture Considering Strain Rate and Temperature under the Complex Stress States, J. Mater. Process. Technol., 2021, 297, p 117275.

    Article  CAS  Google Scholar 

  33. Z. Zhang, Y. Wu, and F. Huang, Extension of a Shear-Controlled Ductile Fracture Criterion by Considering the Necking Coalescence of Voids, Int. J. Solids Struct., 2022, 236–237, p 111324.

    Article  Google Scholar 

  34. A.A. Benzerga, J. Besson, and A. Pineau, Anisotropic Ductile Fracture Part I: Experiments, Acta Mater., 2004, 52(15), p 4623–4638.

    Article  CAS  ADS  Google Scholar 

  35. A.A. Benzerga, J. Besson, and A. Pineau, Anisotropic Ductile Fracture Part II: Theory, Acta Mater., 2004, 52(15), p 4639–4650.

    Article  CAS  ADS  Google Scholar 

  36. A.M. Beese, M. Luo, Y.N. Li, Y.L. Bai, and T. Wierzbicki, Partially Coupled Anisotropic Fracture Model for Aluminum Sheets, Eng. Fract. Mech., 2010, 77(7), p 1128–1152.

    Article  Google Scholar 

  37. Y.L. Bai and T. Wierzbicki, Application of Extended Mohr-Coulomb Criterion to Ductile Fracture, Int. J. Fract., 2010, 161(1), p 1–20.

    Article  CAS  Google Scholar 

  38. R. Hill, A Theory of the Yielding and Plastic Flow of Anisotropic Metals, Proc. Royal Soc. London Ser. A Math. Phys. Sci., 1948, 193(1033), p 281–297.

    MathSciNet  CAS  ADS  Google Scholar 

  39. M. Luo, M. Dunand, and D. Mohr, Experiments and Modeling of Anisotropic Aluminum Extrusions under Multi-Axial Loading-Part II: Ductile Fracture, Int. J. Plast., 2012, 32–33, p 36–58.

    Article  Google Scholar 

  40. Y.S. Lou and J.W. Yoon, Anisotropic Ductile Fracture Criterion Based on Linear Transformation, Int. J. Plast., 2017, 93, p 3–25.

    Article  CAS  Google Scholar 

  41. F. Barlat and K.S. Chung, Anisotropic Potentials for Plastically Deforming Metals, Modell. Simul. Mater. Sci. Eng., 1993, 1(4), p 403–416.

    Article  CAS  ADS  Google Scholar 

  42. B.T. Tang, Q.F. Wang, N. Guo, X.S. Li, Q.L. Wang, A. Ghiotti, S. Bruschi, and Z.G. Luo, Modeling Anisotropic Ductile Fracture Behavior of Ti-6Al-4V Titanium Alloy for Sheet Forming Applications at Room Temperature, Int. J. Solids Struct., 2020, 207, p 178–195.

    Article  CAS  Google Scholar 

  43. G.Y. Gu and D. Mohr, Anisotropic Hosford-Coulomb fracture Initiation Model: Theory and application, Eng. Fract. Mech., 2015, 147, p 480–497.

    Article  Google Scholar 

  44. Y.Q. Jia, and Y.L. Bai, Ductile Fracture Prediction for Metal Sheets Using All-Strain-Based Anisotropic eMMC Model, Int. J. Mech. Sci., 2016, 115, p 516–531.

    Article  Google Scholar 

  45. N. Park, H. Huh, S.J. Lim, Y.S. Lou, Y.S. Kang and M.H. Seo, Fracture-Based Forming Limit Criteria for Anisotropic Materials in Sheet Metal Forming, Int. J. Plast., 2017, 96, p 1–35.

    Article  Google Scholar 

  46. N. Park, H. Huh, and J.W. Yoon, Anisotropic Fracture Forming Limit Diagram Considering Non-Directionality of the Equi-Biaxial Fracture Strain, Int. J. Solids Struct., 2018, 151, p 181–194.

    Article  CAS  Google Scholar 

  47. Y.S. Lou and J.W. Yoon, Alternative Approach to Model Ductile Fracture by Incorporating Anisotropic Yield Function, Int. J. Solids Struct., 2019, 164, p 12–24.

    Article  CAS  Google Scholar 

  48. B. Gu, J. He, S.H. Li, and Z.Q. Lin, Anisotropic Fracture Modeling of Sheet Metals: From In-Plane to Out-of-Plane, Int. J. Solids Struct., 2020, 182, p 112–140.

    Article  Google Scholar 

  49. N. Park, T.B. Stoughton, and J.W. Yoon, A New Approach for Fracture Prediction Considering General Anisotropy of Metal Sheets, Int. J. Plast., 2020, 124, p 199–225.

    Article  Google Scholar 

  50. T. Xu, F. Li, X. Wang, and G. Zhang, Modeling Anisotropic Ductile Fracture of AA7075-T6 Sheet for Sheet Metal Forming Considering Anisotropic Stress State, Theor. Appl. Fract. Mech., 2022, 122, p 103610.

    Article  CAS  Google Scholar 

  51. T. Xu, F. Li, and X. Wang, A User-Friendly Anisotropic Yield Function for Modeling Anisotropy of BCC and FCC Sheet Metals, J. Mater. Eng. Perform., 2022 https://doi.org/10.1007/s11665-022-07275-5

    Article  Google Scholar 

  52. H. Quach and Y.-S. Kim, Effect of Non-Associated Flow Rule on Fracture Prediction of Metal Sheets Using a Novel Anisotropic Ductile Fracture Criterion, Int. J. Mech. Sci., 2021, 195, p 106224.

    Article  Google Scholar 

  53. Y.S. Lou and J.W. Yoon, A User-Friendly Anisotropic Ductile Fracture Criterion for Sheet Metal under Proportional Loading, Int. J. Solids Struct., 2021, 217, p 48–59.

    Article  Google Scholar 

  54. J.-Y. Lee, K.-J. Lee, M.-G. Lee, T. Kuwabara, and F. Barlat, Numerical Modeling for Accurate Prediction of Strain Localization in Hole Expansion of a Steel Sheet, Int. J. Solids Struct., 2019, 156–157, p 107–118.

    Article  Google Scholar 

  55. D. Banabic, F. Barlat, O. Cazacu, and T. Kuwabara, Advances in Anisotropy of Plastic Behaviour and Formability of Sheet Metals, Int. J. Mater. Form., 2020, 13(5), p 749–787.

    Article  Google Scholar 

  56. X.P. Zhan, Z.H. Wang, M. Li, Q. Hu, and J. Chen, Investigations on Failure-to-Fracture Mechanism and Prediction of Forming Limit for Aluminum Alloy Incremental Forming Process, J. Mater. Process. Technol., 2020, 282, p 116687.

    Article  CAS  Google Scholar 

  57. F. Barlat and M.-G. Lee, Constitutive Description of Isotropic and Anisotropic Plasticity for Metals, Failure and Damage Analysis of Advanced Materialsed. H. Altenbach, T. Sadowski Ed., Springer, Vienna, 2015, p 67–118

    Google Scholar 

  58. D. Mohr and S.J. Marcadet, Micromechanically-Motivated Phenomenological Hosford-Coulomb Model for Predicting Ductile Fracture Initiation at Low Stress Triaxialities, Int. J. Solids Struct., 2015, 67–68, p 40–55.

    Article  Google Scholar 

  59. Y. Bai and T. Wierzbicki, A Comparative Study of Three Groups of Ductile Fracture Loci in the 3D Space, Eng. Fract. Mech., 2015, 135, p 147–167.

    Article  Google Scholar 

  60. C.C. Roth and D. Mohr, Ductile Fracture Experiments with Locally Proportional Loading Histories, Int. J. Plast., 2016, 79, p 328–354.

    Article  CAS  Google Scholar 

  61. J. Lee, J. Ha, H.J. Bong, D. Kim, and M.-G. Lee, Evolutionary Anisotropy and Flow Stress in Advanced High Strength Steels under Loading Path Changes, Mater. Sci. Eng. A, 2016, 672, p 65–77.

    Article  CAS  Google Scholar 

  62. L. Cortese, F. Nalli, and M. Rossi, A Nonlinear Model for Ductile Damage Accumulation under Multiaxial Non-Proportional Loading Conditions, Int. J. Plast., 2016, 85, p 77–92.

    Article  CAS  Google Scholar 

  63. S. Basak and S.K. Panda, Implementation of Yld96 Anisotropy Plasticity Theory for Estimation of Polar Effective Plastic Strain Based Failure Limit of Pre-Strained thin Steels, Thin Walled Struct., 2018, 126, p 26–37.

    Article  Google Scholar 

  64. M. Ganjiani and M. Homayounfard, Development of a Ductile Failure Model Sensitive to Stress Triaxiality and Lode Angle, Int. J. Solids Struct., 2021, 225, p 111066.

    Article  Google Scholar 

  65. N. Hosseini, J.C. Nieto-Fuentes, M. Dakshinamurthy, J.A. Rodríguez-Martínez, and G. Vadillo, The Effect of Material Orientation on Void Growth, Int. J. Plast., 2022, 148, p 103149.

    Article  CAS  Google Scholar 

  66. M. Dakshinamurthy, K. Kowalczyk-Gajewska, and G. Vadillo, Influence of Crystallographic Orientation on the Void Growth at the Grain Boundaries in bi-Crystals, Int. J. Solids Struct., 2021, 212, p 61–79.

    Article  CAS  Google Scholar 

  67. N. Hosseini and J.A. Rodríguez-Martínez, A Simple and Computationally Efficient Stress Integration Scheme Based on Numerical Approximation of the Yield Function Gradients: Application to Advanced Yield Criteria, Finite Elem. Anal. Des., 2021, 192, p 103538.

    Article  MathSciNet  Google Scholar 

  68. H. Quach, J.J. Kim, J.H. Sung, and Y.S. Kim, A Novel Uncoupled Ductile Fracture Criterion for Prediction of Failure in Sheet Metal Forming, IOP Conf. Ser. Mater. Sci. Eng., 2020, 967(1), p 012032.

    Article  CAS  Google Scholar 

  69. N. Park, H. Huh, and J.W. Yoon, Prediction of Fracture Initiation in Square Cup Drawing of DP980 Using an Anisotropic Ductile fracture Criterion, J. Phys. Conf. Ser., 2017, 896, p 012111.

    Article  Google Scholar 

Download references

Acknowledgments

The authors express sincere gratitude to Dr. Navab Hosseini (University Carlos III of Madrid) for helpful discussions on implementing the constitutive model in ABAQUS. The authors are very grateful for the support received from the National Natural Science Foundation of China (Grant No. 51275414, No.51605387), the Fundamental Research Funds for the Central Universities with Grant No. 3102015BJ (II) ZS007, the Research Fund of the State Key Laboratory of Solidification Processing (NWPU), China (Grant No.130-QP-2015), and the Key Research and Development Program of Shaanxi Province (No. 2020ZDLGY12-07).

Author information

Authors and Affiliations

Authors

Contributions

TX involved in conceptualization, investigation, numerical simulation, visualization, and writing—original draft. FL involved in review and editing and supervision. XW involved in investigation and visualization.

Corresponding author

Correspondence to Fuguo Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Calibrated Parameters of Lou and Yoon's (2021) Model for Different metal Sheets

Appendix A: Calibrated Parameters of Lou and Yoon's (2021) Model for Different metal Sheets

See Tables 12, 13, and 14.

Table 12 Fracture parameters of Lou and Yoon's model in Eq 1 for DP980 steel
Table 13 Fracture parameters of Lou and Yoon's model in Eq 1 for AA6082-T6 aluminum alloy
Table 14 Fracture parameters of Lou and Yoon's model in Eq 1 for Ti-6Al-4 V titanium alloy

Lou and Yoon (Ref 53) suggested a user-friendly anisotropic ductile fracture defined below:

$$\begin{array}{*{20}c} {\left( {\frac{2}{{\sqrt {L^{2} + 3} }}} \right)^{{C_{1} \left( \theta \right)}} \left( {\frac{{f\left( {\eta ,L,C_{0} } \right)}}{{f\left( {2/3,1,C_{0} } \right)}}} \right)^{{C_{2} \left( \theta \right)}} \overline{\varepsilon }_{f}^{p} = C_{3} \left( \theta \right)} \\ \end{array}$$
(A1)

with

$$\begin{array}{*{20}c} {f\left( {\eta ,L,C_{0} } \right) = \eta + C_{4} \left( \theta \right)\frac{{\left( {3 - L} \right)}}{{3\sqrt {L^{2} + 3} }} + C_{0} } \\ \end{array}$$
(A2)

where Ci(θ) (i = 1, 2 , 3, 4) is the interpolated fracture parameters along the arbitrary loading direction, for instance, the interpolated fracture parameters are expressed as:

$$\begin{gathered} C_{i} \left( \theta \right) = A^{i} \cos^{4} \theta + B^{i} \sin^{2} \theta \cos^{2} \theta + D^{i} \sin^{4} \theta ; \hfill \\ A^{i} = C_{i}^{0} ; B^{i} = 4C_{i}^{45} - C_{i}^{0} - C_{i}^{90} ; D^{i} = C_{i}^{90} \left( {i = 1, 2, 3, 4} \right) \hfill \\ \end{gathered}$$
(A3)

where \(C_{i}^{0}\), \(C_{i}^{45}\), and \(C_{i}^{90}\) (i = 1, …, 4) are calibrated fracture parameters along RD, DD, and TD, respectively.

In order to calibrate the fracture parameters in the above Lou and Yoon’s model, it is generally required three steps as follows:

  1. (1)

    Fracture experiments are performed to determine the fracture strains along different loading directions under various stress states of in-plane shear, uniaxial tension, plane strain tension, and balanced biaxial tension.

  2. (2)

    Based on measured fracture strains in Step 1, the fracture parameters in the above Lou and Yoon’s model are identified along specific loading directions, e.g., \(C_{i}^{0}\) for RD, \(C_{i}^{45}\) for DD, and \(C_{i}^{90}\) for TD by minimizing the error equation defined in Eq A4.

    $$\begin{array}{*{20}c} {{\text{err}} = \mathop \sum \limits_{i = 1}^{N} \left( {\frac{{\overline{\varepsilon }_{f}^{{{\text{pred}}.}} }}{{\overline{\varepsilon }_{f}^{{{\text{exp}}.}} }} - 1} \right)^{2} \times 100\% } \\ \end{array}$$
    (A4)

    where the superscript exp. and pred. denote whether the data are obtained from the experiments or predictions.

  3. (3)

    Substituting the identified fracture parameters along specific loading directions in Step 2 into Eq A3, after simple linear operations, the interpolation coefficients, viz., Ai, Bi, and Di, are finally identified.

Furthermore, to take into account the non-directionality of the balanced biaxial tension fracture strain, C3(θ) in Eq A1 is set as identical to equi-biaxial fracture strain, viz., \(C_{3} \left( \theta \right) = \overline{\varepsilon }_{{\text{f}}}^{{\text{b}}}\).

Accordingly, based on the experimental data provided in Table 1 for DP980 steel, Table 6 for AA6082-T6 alloy, and Table 8 for Ti-6Al-4 V alloy, the corresponding identified fracture parameters of the Lou and Yoon's model are briefly summarized below.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, T., Li, F. & Wang, X. Modeling Anisotropic Ductile Fracture Behavior of Sheet Metals Considering Non-directionality of Equi-Biaxial Tensile Fracture. J. of Materi Eng and Perform 33, 1092–1113 (2024). https://doi.org/10.1007/s11665-023-08072-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08072-4

Keywords

Navigation