Skip to main content
Log in

Nanostructured Si, Mg, CO3 2− Substituted Hydroxyapatite Coatings Deposited by Liquid Precursor Plasma Spraying: Synthesis and Characterization

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In this study, a novel liquid precursor plasma spraying (LPPS) process was used to deposit Si, Mg, CO3 2− substituted hydroxyapatite (HA) coatings (alone and cosubstituted) onto Ti-6Al-4V substrates. Salts of silicon, magnesium, and carbonate elements were directly added into the HA liquid precursor for subsequent plasma spraying. The phase composition, structure, and morphology of all HA coatings were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The results indicated that the trace elements were successfully incorporated into the HA structure and nanostructured coatings were obtained for all doped HA formulations. The incorporation of trace elements into the HA structure reduced its crystallinity, especially when silicon, magnesium and carbonate ions entered simultaneously into the HA structure. FTIR spectra showed that the Si-HA and Mg-HA coatings had decreased intensities in both the O-H and P-O bands and that the CO3 2−-HA coating was mainly a B-type carbonate-substituted HA. The results showed that the LPPS process is an effective and simple method to synthesize trace element substituted biomimetic HA coatings with nanostructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P. Ducheyne, S. Radin, and L. King, The Effect of Calcium-Phosphate Ceramic Composition and Structure on In Vitro Behaviour. I. Dissolution, J. Biomed. Mater. Res., 1993, 27(1), p 25-34

    Article  CAS  Google Scholar 

  2. H. Wang, N. Eliaz, Z. Xiang, H.P. Hsu, M. Spector, and L.W. Hobbs, Early Bone Apposition in vivo on Plasma-sprayed and Electrochemically Deposited Hydroxyapatite Coatings on Titanium Alloy, Biomaterials, 2006, 27(23), p 4192-4203

    Article  CAS  Google Scholar 

  3. R.O. Becker, J.A. Spadaro, and E.W. Berg, The Trace Elements of Human Bone, J. Bone Joint Surg. Am., 1968, 50(2), p 326-334

    CAS  Google Scholar 

  4. S. Sprio, A. Tampieri, E. Landi, M. Sandri, S. Martorana, G. Celotti, and G. Logroscino, Physico-chemical Properties and Solubility Behaviour of Multi-substituted Hydroxyapatite Powders Containing Silicon, Mater. Sci. Eng. C, 2008, 28(1), p 179-187

    Article  CAS  Google Scholar 

  5. A.E. Porter, C.M. Botelho, M.A. Lopes, J.D. Santos, S.M. Best, and W. Bonfield, Ultrastructural Comparison of Dissolution and Apatite Precipitation on Hydroxyapatite and Silicon-Substituted Hydroxyapatite In Vitro and In Vivo, J. Biomed. Mater. Res. A, 2004, 69(4), p 670-679

    Article  Google Scholar 

  6. E.S. Thian, J. Huang, M.E. Vickers, S.M. Best, Z.H. Barber, and W. Bonfield, Silicon-Substituted Hydroxyapatite (SiHA): A Novel Calcium Phosphate Coating for Biomedical Applications, J. Mater. Sci., 2006, 41(3), p 709-717

    Article  CAS  Google Scholar 

  7. T.J. Webster, C. Ergun, R.H. Doremus, and R. Bizios, Hydroxylapatite with Substituted Magnesium, Zinc, Cadmium, and Yttrium. II. Mechanisms of Osteoblast Adhesion, J. Biomed. Mater. Res., 2001, 59(2), p 312-317

    Article  Google Scholar 

  8. E.M. Carlisle, Silicon: A Possible Factor in Bone Calcification, Science, 1970, 167(916), p 279-280

    Article  CAS  Google Scholar 

  9. K.A. Hing, P.A. Revell, N. Smith, and T. Buckland, Effect of Silicon Level on Rate, Quality and Progression of Bone Healing within Silicate-Substituted Porous Hydroxyapatite Scaffolds, Biomaterials, 2006, 27(29), p 5014-5026

    Article  CAS  Google Scholar 

  10. E.S. Thian, J. Huang, S.M. Best, Z.H. Barber, and W. Bonfield, Silicon-Substituted Hydroxyapatite: The Next Generation of Bioactive Coatings, Mater. Sci. Eng. C, 2007, 27(2), p 251-256

    Article  CAS  Google Scholar 

  11. N. Patel, S.M. Best, W. Bonfield, I.R. Gibson, K.A. Hing, and E. Damien, A Comparative Study on the In Vivo Behavior of Hydroxyapatite and Silicon Substituted Hydroxyapatite Granules, J. Mater. Sci. Mater. Med., 2002, 13(12), p 1199-1206

    Article  CAS  Google Scholar 

  12. W.L. Suchanek, K. Byrappa, P. Shuk, R.E. Riman, V.F. Janas, and K.S. TenHuisen, Preparation of Magnesium-substituted Hydroxyapatite Powders by the Mechanochemical Hydrothermal Method, Biomaterials, 2004, 25(19), p 4647-4657

    Article  CAS  Google Scholar 

  13. W.L. Suchanek, K. Byrappa, P. Shuk, R.E. Riman, V.F. Janas, and K.S. TenHuisen, Mechanochemical-Hydrothermal Synthesis of Calcium Phosphate Powders with Coupled Magnesium and Carbonate Substitution, J. Solid State Chem., 2004, 177(3), p 793-799

    Article  CAS  Google Scholar 

  14. I. Mayer, R. Schlam, and J.D.B. Featherstone, Magnesium-Containing Carbonate Apatites, J. Inorg. Biochem., 1997, 66(1), p 1-6

    Article  CAS  Google Scholar 

  15. M. Percival, Bone Health & Osteoporosis, Appl. Nutr. Sci. Rep., 1999, 5(4), p 1-6

    Google Scholar 

  16. A. Bigi, E. Foresti, R. Gregoriani, A. Ripamonti, N. Roveri, and J.S. Shah, The Role of Magnesium on the Structure of Biological Apatite, Calcif. Tissue Int., 1992, 50(5), p 439-444

    Article  CAS  Google Scholar 

  17. K.D. Groot, Bioceramics of Calcium Phosphates, J. Clin. Eng., 1984, 9(1), p 52

    Google Scholar 

  18. C. Rey, V. Renugopalakrishnan, B. Collins, and M. Glimcher, Fourier Transform Infrared Spectroscopic Study of the Carbonate Ions in Bone Mineral During Aging, Calcif. Tissue Int., 1991, 49(4), p 251-258

    Article  CAS  Google Scholar 

  19. P. Habibovic, M.V. Juhl, S. Clyens, R. Martinetti, L. Dolcini, N. Theilgaard, and C.A.V. Blitterswijk, Comparison of Two Carbonate Apatite Ceramics In Vivo, Acta Biomater., 2010, 6, p 2219-2226

    Article  CAS  Google Scholar 

  20. A.J. Melville, J. Harrison, K.A. Gross, J.S. Forsythe, A.O. Trounson, and R. Mollard, Mouse Embryonic Stem Cell Colonization of Carbonated Apatite Surfaces, Biomaterials, 2006, 27(4), p 615-622

    Article  CAS  Google Scholar 

  21. C. Loty, J.M. Sautier, and T. Kokubo, Carbonated Apatite Substrate Stimulates In Vitro Bone Formation and Allows Contact Osteogenesis, J. Dent. Res., 1997, 77, p 977

    Google Scholar 

  22. N. Hijon, M.V. Cabanas, J. Pena, and M. Vallet-Regi, Dip Coated Silicon-Substituted Hydroxyapatite Films, Acta Biomater., 2006, 2(5), p 567-574

    Article  Google Scholar 

  23. M. Jiao and X. Wang, Electrolytic Deposition of Magnesium-Substituted Hydroxyapatite Crystals on Titanium Substrate, Mater. Lett., 2009, 63(27), p 2286-2289

    Article  CAS  Google Scholar 

  24. E. Boanini and A. Bigi, Biomimetic Synthesis of Carbonated Hydroxyapatite Thin Films, Thin Solid Films, 2006, 497(1), p 53-57

    Article  CAS  Google Scholar 

  25. E. Zhang and C. Zou, Porous Titanium and Silicon-Substituted Hydroxyapatite Biomodification Prepared by a Biomimetic Process: Characterization and In Vivo Evaluation, Acta Biomater., 2009, 5(5), p 1732-1741

    Article  CAS  Google Scholar 

  26. B. Bracci, P. Torricelli, and S. Panzavolta, Effect of Mg2+, Sr2+, and Mn2+ on the Chemico-physical and In Vitro Biological Properties of Calcium Phosphate Biomimetic Coatings, J. Inorg. Biochem., 2009, 103(12), p 1666-1674

    Article  CAS  Google Scholar 

  27. J. Karthikeyan, C.C. Berndt, J. Tikkanen, S. Reddy, and H. Herman, Plasma Spray Synthesis of Nanomaterial Powders and Deposits, Mater. Sci. Eng. A, 1997, 238(2), p 275-286

    Article  Google Scholar 

  28. T. Bhatia, A. Ozturk, L.D. Xie, E.H. Jordan, B.M. Cetegen, and M. Gell, Mechanisms of Ceramic Coating Deposition in Solution-Precursor Plasma Spray, J. Mater. Res., 2002, 17(9), p 2363-2372

    Article  CAS  Google Scholar 

  29. Y. Xiao, L. Song, X. Liu, Y. Huang, T. Huang, Y. Wu, J. Chen, and F. Wu, Nanostructure Bioactive Glass-Ceramic Coatings Deposited by the Liquid Precursor Plasma Spraying Process, Appl. Surf. Sci., 2011, 257(6), p 1898-1905

    Article  CAS  Google Scholar 

  30. Y. Huang, L. Song, X. Liu, Y. Xiao, F. Wu, Y. Wu, J. Chen, and Z. Gu, Hydroxyapatite Coatings Deposited By Liquid Precursor Plasma Spraying: Controlled Dense and Porous Microstructures and Osteoblastic Cell Responses, Biofabrication, 2010, 2(4), p 045003

    Article  Google Scholar 

  31. Y. Huang, L. Song, T. Huang, X. Liu, Y. Xiao, Y. Wu, F. Wu, and Z. Gu, Characterization and Formation Mechanism of Nano-Structured Hydroxyapatite Coatings Deposited by the Liquid Precursor Plasma Spraying Process, Biomed. Mater., 2010, 5(5), p 054113

    Article  Google Scholar 

  32. W. Suchanek and M. Yoshimura, Processing and Properties of Hydroxyapatite-Based Biomaterials for Use as Hard Tissue Replacement Implants, J. Mater. Res., 1998, 13(1), p 94-117

    Article  CAS  Google Scholar 

  33. E. Bouyer, F. Gitzhofer, and I. Boulos, Morphological Study of Hydroxyapatite Nanocrystal Suspension, J. Mater. Sci. Mater. Med., 2000, 11(8), p 523-531

    Article  CAS  Google Scholar 

  34. I.R. Gibson, S.M. Best, and W. Bonfield, Effect of Silicon Substitution on the Sintering and Microstructure of Hydroxyapatite, J. Am. Ceram. Soc., 2002, 85(11), p 2771-2777

    Article  CAS  Google Scholar 

  35. F. Ren, Y. Leng, R. Xin, and X. Ge, Synthesis, Characterization and Ab Initio Simulation of Magnesium-Substituted Hydroxyapatite, Acta Biomater., 2010, 6(6), p 2787-2796

    Article  CAS  Google Scholar 

  36. E. Landi, G. Celotti, G. Logroscino, and A. Tampieri, Carbonate Hydroxyapatite as Bone Substitute, J. Eur. Ceram. Soc., 2003, 23(15), p 2931-2937

    Article  CAS  Google Scholar 

  37. A. Slosarczyk, Z. Paszkiewicz, and C. Paluszkiewicz, FTIR and XRD Evaluation of Carbonated Hydroxyapatite Powders Synthesized by Wet Methods, J. Mol. Struct., 2005, 744-747, p 657-661

    Article  CAS  Google Scholar 

  38. S.R. Kim, J.H. Lee, Y.T. Kim, and D.H. Riu, Synthesis of Si, Mg Substituted Hydroxyapatites and Their Sintering Behaviors, Biomaterials, 2005, 24(8), p 1389-1398

    Article  Google Scholar 

  39. A. Bigi, G. Falini, E. Foresti, A. Ripamonti, M. Gazzano, and N. Roveri, Magnesium Influence on Hydroxyapatite Crystallization, J. Inorg. Biochem., 1993, 49(1), p 69-78

    Article  CAS  Google Scholar 

  40. D.G.A. Nelson and J.D.B. Featherstone, Preparation, Analysis and Characterisation of Carbonated Apatites, Calcif. Tissue Int., 1982, 34, p 569-581

    Article  Google Scholar 

  41. S.A. Redey, S. Razzouk, C. Rey, D. Bernache-Assollant, G. Leroy, M. Nardin, and G. Cournot, Osteoclast Adhesion and Activity on Synthetic Hydroxyapatite, Carbonated Hydroxyapatite, and Natural Calcium Carbonate: Relationship to Surface Energies, J. Biomed. Mater. Res., 1999, 45(2), p 140-147

    Article  CAS  Google Scholar 

  42. T.S.S. Kumar, I. Manjubala, and J. Gunasekaran, Synthesis of Carbonated Calcium Phosphate Ceramics Using Microwave Irradiation, Biomaterials, 2000, 21(16), p 1623-1629

    Article  CAS  Google Scholar 

  43. T.J. Webster, C. Ergun, R.H. Doremus, R.W. Siegel, and R. Bizios, Enhanced Functions of Osteoblasts on Nanophase Ceramics, Biomaterials, 2000, 21(17), p 1803-1810

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Analytical & Testing Center, Sichuan University, P.R. China for the assistance in XRD, FTIR, and TEM measurements. This study was supported by the Nation High Technology Research and Development Program (863) of P.R. China (No. 2006AA02A135), and Key Technologies Research and Development Program of Chengdu (No. 10GGYB519SW-023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, T., Xiao, Y., Wang, S. et al. Nanostructured Si, Mg, CO3 2− Substituted Hydroxyapatite Coatings Deposited by Liquid Precursor Plasma Spraying: Synthesis and Characterization. J Therm Spray Tech 20, 829–836 (2011). https://doi.org/10.1007/s11666-011-9628-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-011-9628-y

Keywords

Navigation