Skip to main content
Log in

Computational Evaluation of N-Thiazolyl-2-Cyanoacetamide Derivatives on Corrosion Inhibition of Aluminum

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

Molecular dynamics (MD) simulation and density functional theory (DFT) methods were applied to the N_thiazolyl_2_cyanoacetamide derivatives (N_(4_phenylthiazol_2_yl) _2_phenylazo_2_cyano_ acetamide (a), N_(4_phenylthiazol_2_yl) _2_(p_tolylazo)_2_ cyanoacetamide (b) and N_(4_phenylthiazol_2_yl)_2_(p_methoxyphe_nylazo)_2_ cyanoacetamide (c)) as corrosion inhibitors of aluminum in aqueous phase. Experimental results have shown that the corrosion resistance follows the order: compound (c) > compound (b) > compound (a). Quantum chemical parameters such as hardness, electrophilicity, polarizability, EHOMO, electronegativity, the total amount of electronic charge transferred, total negative charges on the whole of the molecule, surface area and Fukui index have been calculated. The results of quantum chemical confirm that compound (c) is a best inhibitor. Molecular dynamics simulation results showed that compound (c) has the higher negative interaction energy as compared to other inhibitors. Results of DFT and MD simulations calculations confirm that compound (c) has more inhibition efficiency than other inhibitors, which is in good agreement with the experimentally determined inhibition efficiency data reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Díaz-Ballote, J.F. López-Sansores, L. Maldonado-López, L.F. Garfias-Mesias, Electrochem. Commun. 11(1), 41 (2009)

    Article  Google Scholar 

  2. N.D. Alexopoulos, C.J. Dalakouras, P. Skarvelis, S.K. Kourkoulis, Corros. Sci. 55, 289 (2012)

    Article  Google Scholar 

  3. Z. Dan, S. Takigawa, I. Muto, N. Hara, Corros. Sci. 53(5), 2006 (2011)

    Article  Google Scholar 

  4. T.P. Swiler, R.E. Loehman, Acta Mater. 48(18–19), 4419 (2000)

    Article  Google Scholar 

  5. A. Kornherr, S.A. French, A.A. Sokol, C.R.A. Catlow, S. Hansal, W.E.G. Hansal, J.O. Besenhard, H. Kronberger, G.E. Nauer, G. Zifferer, Chem. Phys. Lett. 393(1–3), 107 (2004)

    Article  Google Scholar 

  6. M. Dehdab, M. Shahraki, S.M. Habibi-Khorassani, Amino Acides 48(1), 291 (2015)

    Article  Google Scholar 

  7. K.F. Khaled, A.M. El-Sherik, Int. J. Electrochem. Sci. 8, 10022 (2013)

    Google Scholar 

  8. M. Dehdab, M. Shahraki, S.M. Habibi-Khorassani, Iran J. Sci. Technol. 39A(3), 311 (2015)

    Google Scholar 

  9. I.B. Obot, N.O. Obi-Egbedi, Corros. Sci. 52(2), 657 (2010)

    Article  Google Scholar 

  10. A.Y. Musa, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff, Corros. Sci. 52(10), 3331 (2010)

    Article  Google Scholar 

  11. S.M. Habibi-Khorassani, M. Shahraki, M. Noroozifar, M. Darijani, M. Dehdab, Z. Yavari, Prot. Met. Phys. Chem. 53(3), 579 (2017)

    Article  Google Scholar 

  12. E.E. Ebenso, D.A. Isabirye, N.O. Eddy, Int. J. Mol. Sci. 11(6), 2473 (2010)

    Article  Google Scholar 

  13. M. Shahraki, S.M. Habibi-Khorassani, M. Noroozifar, Z. Yavari, M. Darijani, M. Dehdab, Iran. J. Mater. Sci. Eng. 14, 35 (2017)

    Google Scholar 

  14. J.M. Roque, T. Pandiyan, J. Cruz, E. García-Ochoa, Corros. Sci. 50(3), 614 (2008)

    Article  Google Scholar 

  15. M.S. Masoud, M.K. Awad, M.A. Shaker, M.M.T. El-Tahawy, Corros. Sci. 52(7), 2387 (2010)

    Article  Google Scholar 

  16. A. Popova, M. Christov, A. Zwetanova, Corros. Sci. 49(5), 2131 (2007)

    Article  Google Scholar 

  17. M.K. Awad, R.M. Issa, F.M. Atlam, Mater. Corros. 60(10), 813 (2009)

    Article  Google Scholar 

  18. R.M. Issa, M.K. Awad, F.M. Atlam, Mater. Corros. 61(8), 709 (2010)

    Google Scholar 

  19. G. Gece, Mater. Corros. 64(10), 940 (2013)

    Google Scholar 

  20. M. Abdallah, O. Hazazi, A. Fawzy, S. El-Shafei, A. Fouda, Prot. Met. Phys. Chem. Surf. 50(5), 659 (2014)

    Article  Google Scholar 

  21. A.D. Becke, Phys. Rev. A 38(6), 3098 (1988)

    Article  Google Scholar 

  22. A.D. Becke, J. Chem. Phys. 98(7), 5648 (1993)

    Article  Google Scholar 

  23. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37(2), 785 (1988)

    Article  Google Scholar 

  24. M.J.T. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision C02 (Gaussian Inc, Wallingford, 2004)

    Google Scholar 

  25. S. Miertuš, E. Scrocco, J. Tomasi, Chem. Phys. 55(1), 117 (1981)

    Article  Google Scholar 

  26. R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, Oxford, 1989)

    Google Scholar 

  27. R.G. Parr, R.G. Pearson, J. Am. Chem. Soc. 105(26), 7512 (1983)

    Article  Google Scholar 

  28. T. Koopmans, Physica 1(1–6), 104 (1934)

    Article  Google Scholar 

  29. C.-G. Zhan, J.A. Nichols, D.A. Dixon, J. Phys. Chem. A 107(20), 4184 (2003)

    Article  Google Scholar 

  30. R.G. Parr, L.V. Szentpály, S. Liu, J. Am. Chem. Soc. 121(9), 1922 (1999)

    Article  Google Scholar 

  31. A.T. Maynard, M. Huang, W.G. Rice, D.G. Covell, Proc. Natl. Acad. Sci. USA 95(20), 11578 (1998)

    Article  Google Scholar 

  32. R.G. Pearson, Inorg. Chem. 27(4), 734 (1988)

    Article  Google Scholar 

  33. K.F. Khaled, Electrochim. Acta 55(22), 6523 (2010)

    Article  Google Scholar 

  34. N. Kovačević, A. Kokalj, J. Phys. Chem. C 115(49), 24189 (2011)

    Article  Google Scholar 

  35. M. Yadav, D. Behera, S. Kumar, R.R. Sinha, Ind. Eng. Chem. Res. 52(19), 6318 (2013)

    Article  Google Scholar 

  36. I.B. Obot, D.D. Macdonald, Z.M. Gasem, Corros. Sci. 99, 1 (2015)

    Article  Google Scholar 

  37. A. Kokalj, Electrochim. Acta 56(2), 745 (2010)

    Article  Google Scholar 

  38. C. Fall, N. Binggeli, A. Baldereschi, Phys. Rev. B 58(12), R7544 (1998)

    Article  Google Scholar 

  39. J. Zevallos, A. Toro-Labbé, J. Chil. Chem. Soc. 48, 39 (2003)

    Article  Google Scholar 

  40. T.K. Ghanty, S.K. Ghosh, J. Phys. Chem. 97(19), 4951 (1993)

    Article  Google Scholar 

  41. M. Studio, Manual 6.1 (Accelrys Inc, San Diego, 2007)

    Google Scholar 

  42. K. Fukui, Angew. Chem. Int. Ed. Engl. 21(11), 801 (1982)

    Article  Google Scholar 

  43. E.E. Ebenso, T. Arslan, F. Kandemirli, N. Caner, I. Love, Int. J. Quantum Chem. 110(5), 1003 (2010)

    Article  Google Scholar 

  44. R.G. Pearson, J. Chem. Educ. 45(9), 581 (1968)

    Article  Google Scholar 

  45. R.G. Pearson, J. Chem. Educ. 45(10), 643 (1968)

    Article  Google Scholar 

  46. M. Yadav, S. Kumar, I. Bahadur, D. Ramjugernath, Int. J. Electrochem. Sci. 9, 6529 (2014)

    Google Scholar 

  47. I. Lukovits, E. Kalman, F. Zucchi, Corrosion 57(1), 3 (2001)

    Article  Google Scholar 

  48. C.M. Breneman, K.B. Wiberg, J. Comput. Chem. 11(3), 361 (1990)

    Article  Google Scholar 

  49. L.E. Chirlian, M.M. Francl, J. Comput. Chem. 8(6), 894 (1987)

    Article  Google Scholar 

  50. S.E. Nataraja, T.V. Venkatesha, H.C. Tandon, Corros. Sci. 60, 214 (2012)

    Article  Google Scholar 

  51. Y. Tang, X. Yang, W. Yang, Y. Chen, R. Wan, Corros. Sci. 52(1), 242 (2010)

    Article  Google Scholar 

  52. S. Xia, M. Qiu, L. Yu, F. Liu, H. Zhao, Corros. Sci. 50(7), 2021 (2008)

    Article  Google Scholar 

  53. Y. Tang, L. Yao, C. Kong, W. Yang, Y. Chen, Corros. Sci. 53(5), 2046 (2011)

    Article  Google Scholar 

  54. L. Feng, H. Yang, F. Wang, Electrochim. Acta 58, 427 (2011)

    Article  Google Scholar 

  55. K.F. Khaled, J. Appl. Electrochem. 41(4), 423 (2011)

    Article  Google Scholar 

  56. M. Shahraki, M. Dehdab, S. Elmi, J. Taiwan Inst. Chem. Eng. 62, 313 (2016)

    Article  Google Scholar 

  57. J. Zeng, J. Zhang, X. Gong, Comput. Theor. Chem. 963(1), 110 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support provided by the Kerman Branch, Islamic Azad University and the University of Sistan and Baluchestan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Shahraki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elmi, S., Foroughi, M.M., Shahraki, M. et al. Computational Evaluation of N-Thiazolyl-2-Cyanoacetamide Derivatives on Corrosion Inhibition of Aluminum. J Fail. Anal. and Preven. 18, 887–904 (2018). https://doi.org/10.1007/s11668-018-0476-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-018-0476-7

Keywords

Navigation