Skip to main content
Log in

Thermodynamic Modeling of the Fe-Mn-C and the Fe-Mn-Al Systems Using the Modified Quasichemical Model for Liquid Phase

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

An Erratum to this article was published on 18 May 2016

Abstract

Thermodynamic modeling of Fe-Mn-C and Fe-Mn-Al ternary systems was performed in order to develop a thermodynamically consistent database of a Fe-Mn-Al-C quaternary system. The system is a core system of high Mn-high Al steels for various applications including automotive, cryogenic, electrical steels, etc., and ferromanganese alloy production. Most previous thermodynamic modeling results were reviewed. In order to treat strong chemical interaction between metals (Fe and Mn) and non-metal (C), the modified quasichemical model in the pair approximation was employed for the liquid phase. A number of solid solutions were modeled using the compound energy formalism. Gibbs energy descriptions in sub-binary systems were taken from previous literatures, except for the Mn-Al binary system. Liquid phase in the Mn-Al system was re-optimized in the present study, while the model parameters for other solid phases were adopted from a literature. By merging the Gibbs energies for relevant phases in sub-binary systems, thermodynamic calculations were carried out for each ternary system. Optimization results of the Fe-Mn-C system in the present study showed improved descriptions for both liquid and solid phases. Solubilities of C in the liquid and the fcc phases were reproduced well, and phase diagram information (liquidus, invariant reactions) was also in good agreement with the experimental data. Thermodynamic assessment of the Fe-Mn-Al system with consideration of A2/B2 order-disorder transition for the bcc phase also showed satisfactory representations for the experimental data. The model parameters derived in the present study can be utilized for further thermodynamic modeling of the Fe-Mn-Al-C quaternary system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S.-H. Kim, H.-S. Kim, N.-J. Kim, Brittle intermetallic compound makes ultrastrong low-density steel with large ductility. Nature 518, 77-79 (2015)

    Article  ADS  Google Scholar 

  2. D.-W. Suh, S.-J. Park, T.-H. Lee, C.-S. Oh, S.-J. Kim, Influence of Al on the microstructural evolution and mechanical behavior of low-carbon, manganese transformation-induced-plasticity steel. Metall. Mater. Trans. A 41, 397-408 (2010)

    Article  Google Scholar 

  3. K.-G. Chin, H.-J. Lee, J.-H. Kwak, J.-Y. Kang, B.-J. Lee, Thermodynamic calculation on the stability of (Fe, Mn)\(_3\)AlC carbide in high aluminum steels. J. Alloys Compd. 505, 217-223 (2010)

    Article  Google Scholar 

  4. K. Shubhank, Y.-B. Kang, Critical evaluation and thermodynamic optimization of Fe-Cu, Cu-C, Fe-C binary systems and Fe-Cu-C ternary system. CALPHAD 45, 127-137 (2014)

    Article  Google Scholar 

  5. M.-K. Paek, J.-J. Pak, Y.-B. Kang, Phase equilibria and thermodynamics of Mn-C, Mn-Si, Si-C binary systems and Mn-Si-C ternary system by critical evaluation, combined with experiment and thermodynamic modeling. CALPHAD 46, 92-102 (2014)

    Article  Google Scholar 

  6. A.D. Pelton, Y.-B. Kang, Modeling short-range ordering in solutions. Int. J. Mater. Res. 98, 907-917 (2007)

    Article  Google Scholar 

  7. Y.-B. Kang, A.D. Pelton, Modeling short-range ordering in liquids: the Mg-Al-Sn system. CALPHAD 34, 180-188 (2010)

    Article  Google Scholar 

  8. A.D. Pelton, S. Decterov, G. Eriksson, C. Robelin, Y. Dessureault, The modified quasichemical model I—binary solutions. Metall. Mater. Trans. B 31, 651-659 (2000)

    Article  Google Scholar 

  9. M.-K. Paek, Ph.D. Thesis, Hanyang University, Ansan, Republic of Korea (2014)

  10. A.T. Phan, M.-K. Paek, Y.-B. Kang, Phase equilibria and thermodynamics of the Fe-Al-C system: critical evaluation. Experiment and thermodynamic optimization. Acta Mater. 79, 1-15 (2014)

    Article  ADS  Google Scholar 

  11. A. Shukla, A.D. Pelton, Thermodynamic assessment of the Al-Mn and Mg-Al-Mn systems. J. Phase Equilib. Diff. 30, 28-39 (2008)

    Article  Google Scholar 

  12. P. Chartrand, Private communication (École Polytechnique, Montreal, 2004)

    Google Scholar 

  13. M.-S. Kim, Y.-B. Kang, Development of thermodynamic database for High Mn—high Al steels: phase equilibria in the Fe-Mn-Al-C system: experiment and thermodynamic modeling. CALPHAD (2015). doi:10.1016/j.calphad.2015.08.004

  14. V.G. Rivlin, 14: critical review of constitution of carbon-chromium-iron and carbon-iron-manganese systems. Int. Met. Rev. 29, 299-328 (1984)

    Article  Google Scholar 

  15. G. Raynor, V. Rivlin, “Al-Fe-Mn” in phase equilibria in iron ternary alloys (Institute of Metals, London, 1988), pp. 98-106

    Google Scholar 

  16. V. Raghavan, Al-Fe-Mn (aluminum-iron-manganese). J. Phase Equilib. 15, 410-411 (1994)

    Article  Google Scholar 

  17. V. Raghavan, Al-Fe-Mn (aluminum-iron-manganese). J. Phase Equilib. Diff. 26, 65-67 (2005)

    Article  Google Scholar 

  18. W. Huang, A thermodynamic assessment of the Fe-Mn-C system. Metall. Mater. Trans. A 21, 2115-2123 (1990)

    Article  ADS  Google Scholar 

  19. B.-J. Lee, D.-N. Lee, A thermodynamic study on the Fe-Mn-C system. CALPHAD 13, 355-365 (1989)

    Article  Google Scholar 

  20. D. Djurovic, B. Hallstedt, J. Appen, R. Dronskowski, Thermodynamic assessment of the Fe-Mn-C system. CALPHAD 35, 479-491 (2011)

    Article  Google Scholar 

  21. R. Umino, X.J. Liu, Y. Sutou, C.P. Wang, I. Ohnuma, R. Kainuma, K. Ishida, Experimental determination and thermodynamic calculation of phase equilibria in the Fe-Mn-Al system. J. Phase Equilib. Diff. 27, 54-62 (2006)

    Article  Google Scholar 

  22. B.B. Lindahl, M. Selleby, The Al-Fe-Mn system revisited—an updated thermodynamic description using the most recent binaries. CALPHAD 43, 86-93 (2013)

    Article  Google Scholar 

  23. P. Gustafson, A thermodynamic evaluation of the Fe-C system. Scand. J. Metall. 14, 259-267 (1985)

    Google Scholar 

  24. B. Hallstedt, D. Djurovic, Modelling of interstitials in the bcc phase. CALPHAD 33, 233-236 (2009)

    Article  Google Scholar 

  25. B. Hallstedt, D. Djurovic, J. Appen, R. Dronskowski, A. Dick, F. Körmann, T. Hickel, J. Neugebauer, Thermodynamic properties of cementite (Fe\(_3\)C). CALPHAD 34, 129-133 (2010)

    Article  Google Scholar 

  26. R. Naraghi, M. Selleby, J. Ågren, Thermodynamics of stable and metastable structures in Fe-C system. CALPHAD 46, 148-158 (2014)

    Article  Google Scholar 

  27. W. Huang, An assessment of the Fe-Mn system. CALPHAD 11, 183-186 (1989)

    Google Scholar 

  28. V. Witusiewicz, F. Sommer, E. Mittemeijer, Enthalpy of formation and heat capacity of Fe-Mn alloys. Metall. Mater. Trans. B 34, 209-223 (2003)

    Article  Google Scholar 

  29. W. Huang, Thermodynamic assessment of the Mn-C system. Scand. J. Metall. 19, 26-32 (1990)

    Google Scholar 

  30. D. Djurovic, B. Hallstedt, J. Appen, R. Dronskowski, Thermodynamic assessment of the Mn-C system. CALPHAD 34, 279-285 (2010)

    Article  Google Scholar 

  31. U. Kattner, B. Burton, Phase Diagrams of Binary Iron Alloys (ASM International, Materials Park, 1993)

    Google Scholar 

  32. B. Sundman, I. Ohnuma, N. Dupin, U. Kattner, S. Fries, An assessment of the entire Al-Fe system including D0\(_3\) ordering. Acta Mater. 57, 2896-2908 (2009)

    Article  Google Scholar 

  33. M. Jacobs, R. Schmid-Fetzer, Phase behavior and thermodynamic properties in the system Fe-Al. CALPHAD 33, 170-178 (2009)

    Article  Google Scholar 

  34. M. Seiersten, SINTEF report STF-28F93051, Oslo, Norway, 1993

  35. F. Woolley, J.F. Elliott, Heats of solution of aluminum, copper, and silicon in liquid iron. Trans. AIME 239, 1872-1883 (1967)

    Google Scholar 

  36. M.S. Petrushevskiy, Y.O. Esin, P.V. Gel’d, V.M. Sandakov, Concentration dependence of the enthalpy of formation of iron-aluminum molten alloys. Izv. Akad. Nauk SSSR Metall. 6, 193-197 (1972)

    Google Scholar 

  37. A. McAlister, J. Murray, The (Al-Mn) aluminum-manganese system. Bull. Alloy Phase Diagrams 8, 438-447 (1987)

    Article  Google Scholar 

  38. Y. Du, J. Wang, J. Zhaoa, J. Schuster, F. Weitzer, R. Schmid-Fetzer, M. Ohno, H. Xu, Z.-K. Liu, S. Shang, W. Zhang, Reassessment of the Al-Mn system and a thermodynamic description of the Al-Mg-Mn system. Int. J. Mat. Res. 98, 855-871 (2007)

    Article  Google Scholar 

  39. A. Jansson, A thermodynamic evaluation of the Al-Mn system. Metall. Mater. Trans. A 23, 2953-2962 (1992)

    Article  ADS  Google Scholar 

  40. X. Liu, I. Ohnuma, R. Kainuma, K. Ishida, Thermodynamic assessment of the aluminum-manganese (Al-Mn) binary phase diagram. J. Phase Equilib. 20, 45-56 (1999)

    Article  Google Scholar 

  41. V. Rivlin, 12: critical review of constitution of aluminum-iron-manganese and iron-manganese-silicon systems. Int. Met. Rev. 28, 309-337 (1983)

    Google Scholar 

  42. X. Liu, S. Hao, A thermodynamic calculation of the Fe-Mn-Al ternary system. CALPHAD 17, 79-91 (1993)

    Article  Google Scholar 

  43. D. Chakrabarti, Phase stability in ternary systems of transition elements with aluminum. Metall. Trans. B 8, 121-123 (1977)

    Article  Google Scholar 

  44. C. Müller, H. Stadelmaier, B. Reinsch, G. Petzow, Constitution of Mn-Al-(Cu, Fe, Ni or C) alloys near the magnetic \(\tau\) phase. Z. Metallkd. 88, 620-624 (1997)

    Google Scholar 

  45. X. Liu, S. Hao, Phase equilibria and \(\alpha\) (BCC) phase region continuity at 1000 \(^\circ\)C in the Fe-Mn-Al system. Scr. Metall. Mater. 28, 611-616 (1993)

    Article  Google Scholar 

  46. W. Pearson, Handbook of Lattice Spacings and Stuctures of Metals and Alloys (Pergamon, New York, 1967)

    Google Scholar 

  47. E.-J. Kim, B.-D. You, J.-J. Pak, Thermodynamics of carbon in liquid manganese and ferromanganese alloys. Metall. Mater. Trans. B 34, 51-59 (2003)

    Article  Google Scholar 

  48. H. Enokido, A. Moro-Oka, E. Ichise, Thermochemical activities of liquid Fe-Mn-C alloy. Tetsu-to-Hagane 81, 619-624 (1995)

    Google Scholar 

  49. C.W. Bale, P. Chartrand, S. Degterov, G. Eriksson, K. Hack, R.B. Mahfoud, J. Melancon, A.D. Pelton, S. Petersen, FactSage thermochemical software and databases. CALPHAD 26, 189-228 (2006)

    Article  Google Scholar 

  50. C.W. Bale, E. Bélisle, P. Chartrand, S. Decterov, G. Eriksson, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melançon, A.D. Pelton, C. Robelin, S. Petersen, FactSage thermochemical software and databases—recent developments. CALPHAD 33, 295-311 (2009)

    Article  Google Scholar 

  51. A. Dinsdale, SGTE data for pure elements. CALPHAD 15, 317-425 (1991)

    Article  Google Scholar 

  52. A.D. Pelton, P. Chartrand, The modified quasichemical model: part II. multicomponent solutions. Metall. Mater. Trans. A 32, 1409-1416 (2001)

    Article  Google Scholar 

  53. M.K. Paek, J.J. Pak, Y.-B. Kang, Aluminum deoxidation equilibria in liquid iron: part II. thermodynamic modeling, Metall. Mater. Trans. B (2015). doi:10.1007/s11663-015-0369-z

  54. M. Hillert, The compound energy formalism. J. Alloys Compd. 320, 161-176 (2001)

    Article  Google Scholar 

  55. M. Hillert, M. Jarl, A model for alloying effects in ferromagnetic metals. CALPHAD 2, 227-238 (1978)

    Article  Google Scholar 

  56. G. Inden, The role of magnetism in the calculation of phase diagrams. Physica B+C 103, 82-100 (1981)

    Article  ADS  Google Scholar 

  57. J. Chipman, R. Alfred, L. Gott, R. Small, D. Wilson, C. Thomson, D. Gue, The solubility of carbon in molten iron and iron-silicon and iron-manganese alloys. Trans. ASM 44, 1215-1232 (1952)

    Google Scholar 

  58. E. Turkdogan, R. Hancock, S. Herlitz, J. Dentan, Thermodynamics of carbon dissolved in iron alloys, part V: solubility of graphite in iron-manganese, iron-cobalt, and iron-nickel melts. J. Iron Steel Inst. 183, 69-72 (1956)

    Google Scholar 

  59. R. Ni, Z. Ma, S. Wei, Thermodynamics of Mn-Fe-C and Mn-Si-C system. Steel Res. 61, 113-116 (1990)

    Google Scholar 

  60. J. Fenstad, Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2000

  61. M.-K. Paek, W.-K. Lee, J. Jin, J.-M. Jang, J.-J. Pak, Thermodynamic interactions among carbon, silicon and iron in carbon saturated manganese melts. Korea J. Met. Mater. 50, 45-51 (2012)

    Article  Google Scholar 

  62. S. Saxena, H. Midtagaard, SINTEF Report No. STF-34F79017, Trondheim, Norway, 1979

  63. F. Schürmann, I. Geissler, Melting equilibria of the ternary system iron-manganese-carbon. Giessereiforschung 29, 153-159 (1977)

    Google Scholar 

  64. K. Kuo, L. Persson, A contribution to the constitution of the ternary system Fe-Mn-C isothermal sections at 1050 \(^\circ\)C, 910 \(^\circ\)C, and 690 \(^\circ\)C. J. Iron Steel Inst. 178, 39-44 (1954)

    Google Scholar 

  65. W. Koch, H. Keller, Equilibrium investigations in the system iron-manganese-carbon as an example for the use of separating methods for establishing and checking constitutional diagrams (in German). Arch. Eisenhüttenwes 35, 1173-1180 (1964)

    Google Scholar 

  66. T. Nishizawa, An experimental study of the Fe-Mn-C and Fe-Cr-C systems at 1000 \(^\circ\)C. Scand. J. Metall. 6, 74-78 (1977)

    Google Scholar 

  67. R. Benz, J. Elliott, J. Chipman, Thermodynamics of the solid phases in the system Fe-Mn-C. Metall. Mater. Trans. B 4, 1975-1986 (1973)

    Article  ADS  Google Scholar 

  68. R. Gurry, J. Christakos, L. Darken, Size, manganese content, and curie point of carbides extracted from manganese steel. Trans. ASM 53, 187-198 (1961)

    Google Scholar 

  69. C.K. Ande, M.H.F. Sluiter, First-principles calculations on stabilization of iron carbides (Fe\(_3\)C, Fe\(_5\)C\(_2\), and \(\eta\)-Fe\(_2\)C) in steels by common alloying elements. Metall. Mater. Trans. A 43, 4436-4444 (2012)

    Article  Google Scholar 

  70. C.M. Fang, M.H.F. Sluiter, M.A. van Huis, C.K. Ande, H.W. Zandbergen, Origin of predominance of cementite among iron carbides in steel at elevated temperature. Phys. Rev. Lett. 105, 055503 (2010)

    Article  ADS  Google Scholar 

  71. K.O.E. Henriksson, N. Sandberg, J. Wallenius, Carbides in stainless steels: results from ab initio investigations. Appl. Phys. Lett. 93, 191912 (2008)

    Article  ADS  Google Scholar 

  72. K.O.E. Henriksson, K. Nordlund, Simulations of cementite: an analytical potential for the Fe-C system. Phys. Rev. B 79, 144107 (2009)

    Article  ADS  Google Scholar 

  73. M. Widom, M. Mihalkovic, Stability of Fe-based alloys with structure type C\(_6\)Cr\(_{23}\). J. Mater. Res. 20, 237-242 (2011)

    Article  ADS  Google Scholar 

  74. I.R. Shein, N.I. Medvedeva, A.I. Ivanovskii, Electronic and structural properties of cementite-type M\(_3\)X (M=Fe Co, Ni; X=C or B) by first principles calculations. Physica B 371, 126-132 (2006)

    Article  ADS  Google Scholar 

  75. X. Liu, R. Kainuma, H. Ohtani, K. Ishida, Phase equilibria in the Mn-rich portion of the binary system Mn-Al. J. Alloys Compd. 235, 256-261 (1996)

    Article  Google Scholar 

  76. A. Koch, P. Hokkeling, M. Steeg, K. Devos, New material for permanent magnets on a base of Mn and Al. J. Appl. Phys. 31, 75S-77S (1960)

    Article  ADS  Google Scholar 

  77. H. Phillips, The constitution of alloys of aluminium with manganese silicon and iron. J. Inst. Met. 69, 275-316 (1942)

    Google Scholar 

  78. E. Dix, W. Fink, L. Willey, Equilibrium relations in Al-Mn alloys of high purity II. Trans. AIME 104, 335-352 (1933)

    Google Scholar 

  79. C. Muller, H. Stadelmaier, B. Reinsch, G. Petzow, Metallurgy of the magnetic \(\tau\)-phase in Mn-Al and Mn-Al-C. Z. Metallkd. 87, 594-597 (1996)

    Google Scholar 

  80. J. Murray, A. McAlister, R. Schaefer, L. Bendersky, F. Biancaniella, D. Moffatt, Stable and metastable phase equilibria in the Al-Mn system. Metall. Trans. A 18, 385-392 (1987)

    Article  Google Scholar 

  81. T. Godecke, W. Koster, A supplement to the constitution of the Al-Mn system. Z. Metallkd. 62, 727-732 (1971)

    Google Scholar 

  82. W. Koster, E. Watchtel, Magnetic investigation of Al-Mn alloys containing more than 25 at.%Mn. Z. Metallkd. 51, 271-280 (1960)

    Google Scholar 

  83. Y. Esin, N. Bobrov, M. Petrushevskii, P. Gel’d, Concentration variation of the enthalpies of formation of manganese-aluminium melts at 1626K. Russ. J. Phys. Chem. 47, 1103-1105 (1973)

    Google Scholar 

  84. R. Chastel, M. Saito, C. Bergman, Thermodynamic investigation on Al\(_{1-x}\)Mn\(_x\) melts by Knudsen cell mass spectrometry. J. Alloys Compd. 205, 39-43 (1994)

    Article  Google Scholar 

  85. G. Batalin, E.A. Beloborodava, V. Stukalo, A. Chekhovskii, Thermodynamic properties of molten alloys of aluminum with manganese. Sov. Prog. Chem. 38, 83-84 (1972)

    Google Scholar 

  86. G. Batalin, T. Bondarenko, V. Sudavtsova, Enthalpies of mixing in the Fe-Mn-Al systems. Dopov. Nat. Akad. Nauk. Ukr. 4, 76-78 (1985)

    Google Scholar 

  87. X. Liu, S. Hao, L. Xu, Y. Guo, H. Chen, Experimental study of the phase equilibria in the Fe-Mn-Al system. Metall. Mater. Trans. A 27, 2429-2435 (1996)

    Article  Google Scholar 

  88. D. Schmatz, Formation of beta manganese-type structure in iron-aluminum-manganese alloys. Trans. AIME 215, 112-114 (1959)

    Google Scholar 

Download references

Acknowledgments

The present authors thank to Dr. Min-Kyu Paek, McGill University, Canada for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youn-Bae Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, MS., Kang, YB. Thermodynamic Modeling of the Fe-Mn-C and the Fe-Mn-Al Systems Using the Modified Quasichemical Model for Liquid Phase. J. Phase Equilib. Diffus. 36, 453–470 (2015). https://doi.org/10.1007/s11669-015-0401-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-015-0401-7

Keywords

Navigation