Skip to main content
Log in

Experimental Diffusion Research on BCC Ti-Mn Binary and Ti-Al‐Mn Ternary Alloys

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Interdiffusion in the BCC phase of the Ti-Mn binary and Ti-Al-Mn ternary systems was investigated between 1273 and 1473 K by applying the diffusion-couple technique. The local chemical compositions within the interdiffusion zone of the diffusion couples were acquired by electron probe microanalysis (EPMA). The raw composition profiles were then analytically represented by the error function expansion, which allow the ternary inter- and impurity diffusivities to be appropriately extracted by the Whittle–Green and generalized Hall methods, respectively. It was demonstrated that, all four diffusion coefficients \(\mathop {\tilde{D}}\nolimits_{ij}^{k}\) (i, j = Al, Mn), both main and cross ones, increase with increasing the composition of diffusing specie at 1473 K, whereas at 1273 K \(\mathop {\tilde{D}}\nolimits_{\text{MnMn}}^{\text{Ti}}\) and \(\mathop {\tilde{D}}\nolimits_{\text{MnAl}}^{\text{Ti}}\) are enhanced by the addition of diffusing specie Mn but \(\mathop {\tilde{D}}\nolimits_{\text{AlAl}}^{\text{Ti}}\) and \(\mathop {\tilde{D}}\nolimits_{\text{AlMn}}^{\text{Ti}}\) are in weak dependence with the Al content. A complete comparison among seven Ti-Al-X (Ni, Co, Fe, Mn, Cr, V and Mo) ternary systems reveals that the order of the average main interdiffusion coefficients \(\overline{{\mathop {\tilde{D}}\nolimits_{\text{XX}}^{\text{Ti}} }}\) (X = Ni, Co, Fe, Mn, Cr, V and Mo) exhibits DNi > DCo > DFe > DMn > DCr > DV > DMo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R.R. Boyer, Attributes, Characteristics, and Applications of Titanium and Its Alloys, JOM, 2010, 62(5), p 21-24

    Article  Google Scholar 

  2. O.M. Ivasishin, P.E. Markovsky, Y.V. Matviychuk, S.L. Semiatin, C.H. Ward, and S. Fox, A Comparative Study of the Mechanical Properties of High-Strength β-Titanium Alloys, J. Alloys Compd., 2008, 457(1), p 296-309

    Article  Google Scholar 

  3. G. Lütjering and J.C. Williams, Titanium, Springer, Berlin, 2007

    Google Scholar 

  4. A.V. Mikhaylovskaya, A. Omar, A.D. Kotov, J.S. Kwame, T. Pourcelot, I.S. Golovin, and V.K. Portnoy, Superplastic Deformation Behaviour and Microstructure Evolution of Near-α Ti-Al-Mn Alloy, Mater. Sci. Eng. A, 2017, 708, p 469-477

    Article  Google Scholar 

  5. Y. Sumi, S. Ueta, M. Ueda, and M. Ikeda, Mechanical Properties of Ti-Mn-Al-Fe Alloys After Solution Heat Treatment, Mater. Sci. Forum, 2014, 783–786, p 597-601

    Article  Google Scholar 

  6. J.W. Lu, P. Ge, and Y.Q. Zhao, Recent Development of Effect Mechanism of Alloying Elements in Titanium Alloy Design, Rare Metal Mater. Eng., 2014, 43(4), p 0775-0779

    Article  Google Scholar 

  7. L. Feng, J.S. Li, L. Huang, H. Chang, Y.W. Cui, and L. Zhou, Interdiffusion Behavior of Ti-Mo Binary System in β Phase, Chin. J. Nonferrous Metals, 2009, 19(10), p 1766-1771

    Google Scholar 

  8. A. Laik, G.B. Kale, and K. Bhanumurthy, Interdiffusion Studies between a Mo-Based Alloy and Ti, Metall. Mater. Trans. A, 2006, 37A(10), p 2919-2926

    Article  ADS  Google Scholar 

  9. S.Y. Lee, O. Taguchi, and Y. Iijima, Diffusion of Aluminium in β-Titanium, Mater. Trans., 2010, 51(10), p 1809-1813

    Article  Google Scholar 

  10. I. Thibon, D. Ansel, and T. Gloriant, Interdiffusion in β-Ti-Zr Binary Alloys, J. Alloys Compd., 2009, 470(1–2), p 127-133

    Article  Google Scholar 

  11. C.P. Wang, Y.S. Luo, Y. Lu, J.J. Han, Z. Shi, Y.H. Guo, and X.J. Liu, Interdiffusion and Atomic Mobilities in BCC Ti-Ga and Ti-Cu Alloys, J. Phase Equilib. Diffus., 2017, 38(2), p 84-93

    Article  Google Scholar 

  12. T. Takahashi, Ternary Diffusion and Thermodynamic Interaction in the β Solid Solutions of Ti-Al-Co Alloys, J. Jpn. Inst. Metals, 2009, 59(8), p 432-438

    Article  Google Scholar 

  13. T. Takahashi and Y. Minamino, Ternary Diffusion and Thermodynamic Interaction in the β Solid Solutions of Ti-Al-Fe Alloys at 1423 K, J. Alloys Compd., 2012, 545, p 168-175

    Article  Google Scholar 

  14. B. Gao, Y.Y. Gu, Q.J. Wu, Y.H. Guo, and Y.W. Cui, Diffusion Research in BCC Ti-Al-Ni Ternary Alloys, J. Phase Equilib. Diffus., 2017, 38(4), p 502-508

    Article  Google Scholar 

  15. Y. Chen, B. Tang, G.L. Xu, C.Y. Wang, H.C. Kou, J.S. Li, and Y.W. Cui, Diffusion Research in BCC Ti-Al-Mo Ternary Alloys, Metall. Mater. Trans. A, 2014, 45A(4), p 1647-1652

    Article  ADS  Google Scholar 

  16. E. Santos and F. Dyment, Solvent and Solute Diffusion in B.C.C. Ti-Co and Ti-Mn Alloys, Philos. Mag., 1975, 31(4), p 809-827

    Article  ADS  Google Scholar 

  17. Y. Nakamura, H. Nakajima, S. Ishioka, and M. Koiwa, Effect of Oxygen on Diffusion of Manganese in α Titanium, Acta Metall., 1988, 36(10), p 2787-2795

    Article  Google Scholar 

  18. L.Y. Chen, C.H. Li, A.T. Qiu, X.G. Lu, W.Z. Ding, and Q.D. Zhong, Calculation of Phase Equilibria in Ti-Al-Mn Ternary System Involving a New Ternary Intermetallic Compound, Intermetallics, 2010, 18(11), p 2229-2237

    Article  Google Scholar 

  19. Y. Chen, J.S. Li, B. Tang, G.L. Xu, H.C. Kou, and Y.W. Cui, Interdiffusion in FCC Co-Al-Ti Ternary Alloys, J. Phase Equilib. Diffus., 2015, 36(2), p 127-135

    Article  Google Scholar 

  20. F. Sauer and V. Freise, Diffusion in Binären Gemischen Mit Volumenänderung, Z. Elektrochem. Ber. Bunsenges. Phys. Chem., 1962, 66(4), p 353-362

    Google Scholar 

  21. D.P. Whittle and A. Green, The Measurement of Diffusion Coefficients in Ternary Systems, Scr. Mater., 1974, 8(7), p 883-884

    Google Scholar 

  22. T. Ahmed, I.V. Belova, and G.E. Murch, Finite Difference Solution of the Diffusion Equation and Calculation of the Interdiffusion Coefficient Using the Sauer–Freise and Hall Methods in Binary Systems, Procedia Eng., 2015, 105(247), p 570-575

    Article  Google Scholar 

  23. J.S. Kirkaldy, Diffusion in Multicomponent Metallic Systems, Can. J. Phys., 1957, 35(4), p 435-440

    Article  ADS  Google Scholar 

  24. F.J.A. den Broeder, A General Simplification and Improvement of the Matano–Boltzmann Method in the Determination of the Interdiffusion Coefficients in Binary Systems, Scr. Mater., 1969, 3(5), p 321-325

    Google Scholar 

  25. C.Y. Wang, G.L. Xu, and Y.W. Cui, Mapping of Diffusion and Nanohardness Properties of Fcc Co-Al-V Alloys Using Ternary Diffusion Couples, Metall. Trans. A, 2017, 48(9), p 1-11

    Google Scholar 

  26. J.A. Nesbitts and R.W. Heckel, Interdiffusion in Ni-Rich, Ni-Cr-Al Alloys at 1100 and 1200 °C: part II. Diffusion Coefficients and Predicted Concentration Profiles, Metall. Trans. A, 1987, 18, p 2075-2086

    Article  Google Scholar 

  27. L.D. Hall, An Analytical Method of Calculating Variable Diffusion Coefficients, J. Chem. Phys., 1953, 21, p 87-89

    Article  ADS  Google Scholar 

  28. J.S. Kirkaldy, D. Weichert, and Z. Ul Haq, Diffusion in Multicomponent Metallic Systems: VI. Some Thermodynamic Properties of the D Matrix and the Corresponding Solutions of the Diffusion Equations, Can. J. Phys., 1963, 41(12), p 2166-2173

    Article  ADS  Google Scholar 

  29. F.O. Shuck and H.L. Toor, Diffusion in the Three Component Liquid System Methyl Alcohol-n-Propyl Alcohol-Isobutyl Alcohol, J. Phys. Chem., 1963, 67(3), p 540-545

    Article  Google Scholar 

  30. T. Takahashi, N. Matsuda, S. Kubo, T. Hino, M. Komatsu, and K. Hisayuki, Interdiffusion in the β Solid Solution of Ti-Al-Cr System, J. Jpn. Inst. Metals, 2004, 54(7), p 280-286

    Article  Google Scholar 

  31. T. Takahashi, Y. Minamino, and M. Komatsu, Interdiffusion in β Phase of the Ternary Ti-Al-V System, Mater. Trans., 2008, 49(1), p 125-132

    Article  Google Scholar 

  32. G.M. Hood and R.J. Schultz, Ultra-fast Solute Diffusion in α-Ti and α-Zr, Philos. Mag., 1972, 26(2), p 329-336

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 51571113) and Joint Project of Industry-University-Research of Jiangsu Province (Grant No: BY2016005-02). YG would like to thank the support from the National Natural Science Foundation of China (No. 11647162) and Priority Academic Program Development of Jiangsu Higher Education Institution (PAPD). GX wishes to gratefully acknowledge the financial support by the National Natural Science Foundation of China (No. 51701094) and the Natural Science Foundation of Jiangsu Province (BK20171014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanhua Guo or Yuwen Cui.

Additional information

This invited article is part of a special issue of the Journal of Phase Equilibria and Diffusion in honor of Prof. Zhanpeng Jin’s 80th birthday. The special issue was organized by Prof. Ji-Cheng (JC) Zhao, The Ohio State University; Dr. Qing Chen, Thermo-Calc Software AB; and Prof. Yong Du, Central South University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Tan, J., Guo, Y. et al. Experimental Diffusion Research on BCC Ti-Mn Binary and Ti-Al‐Mn Ternary Alloys. J. Phase Equilib. Diffus. 39, 702–713 (2018). https://doi.org/10.1007/s11669-018-0675-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-018-0675-7

Keywords

Navigation