Skip to main content
Log in

Diffusion Research in BCC Ti-Al-Zr Ternary Alloys

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Diffusion behavior in the BCC Ti-Al-Zr ternary alloys was experimentally investigated at 1273 K (1000 °C) and 1473 K (1200 °C) by means of the diffusion-couple technique. Upon the Whittle-Green and generalized Hall methods, the inter- and impurity diffusion coefficients were respectively extracted from the composition profiles acquired by the electron microprobe analysis (EPMA) and subsequently represented by the error function expansion. The extracted main interdiffusion coefficient \(\tilde{D}_{\text{AlAl}}^{\text{Ti}}\) increases with increasing the content of either Al or Zr, and the increase is appearing more considerably at the higher temperature. However, \(\tilde{D}_{\text{ZrZr}}^{\text{Ti}}\) was noticed to decrease with the increase of Al and Zr contents at 1273 K (1000 °C) while there is an upward trend at 1473 K (1200 °C). The impurity diffusion coefficients of Al in Ti-Zr binary alloys, \(D_{{{\text{Al}}\left( {\text{Ti - Zr}} \right)}}^{*}\), and of Zr in Ti-Al binary alloys, \(D_{{{\text{Zr}}\left( {\text{Ti - Al}} \right)}}^{*}\), increase with increasing the Zr and Al contents respectively. A comparison of average main interdiffusion coefficient \(\overline{{\tilde{D}_{\text{XX}}^{\text{Ti}} }}\) made among ten Ti-Al-X ternary systems suggests that the Zr diffusion is most comparable to Cr and could operate via a vacancy-controlled mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Lütjering and J.C. Williams, Titanium Based Intermetallics, Springer, Berlin, 2003

    Book  Google Scholar 

  2. R.R. Boyer, Attributes, Characteristics, and Applications of Titanium and Its Alloys, JOM, 2010, 62(5), p 21-24

    Article  Google Scholar 

  3. R.R. Boyer and R.D. Briggs, The Use of β Titanium Alloys in the Aerospace Industry, J. Mater. Eng. Perform., 2005, 14(6), p 681-685

    Article  Google Scholar 

  4. J.H. Xiong, S.K. Li, F.Y. Gao, and J.X. Zhang, Microstructure and Mechanical Properties of Ti6321 Alloy Welded Joint by GTAW, Metall. Trans. A, 2015, 640, p 419-423

    Google Scholar 

  5. X. Zhang, H.C. Kou, J.S. Li, F.S. Zhang, and L. Zhou, Evolution of the Secondary α Phase Morphologies During Isothermal Heat Treatment in Ti-7333 Alloy, J. Alloys Compd., 2013, 577(2–3), p 516-522

    Article  Google Scholar 

  6. Y.L. Wang, S.X. Hui, R. Liu, and W.J. Ye, Evaluation of dynamic performance and ballistic behavior of Ti-5Al-5Mo-5V-3Cr-1Zr alloy, Trans. Nonferrous Met. Soc., 2015, 25(2), p 429-436

    Article  Google Scholar 

  7. H. Chang, E. Gautier, F. Bruneseaux, and L. Zhou, β → α+β Isothermal Phase Transformation Kinetics in Ti-B19 Metastable Titanium Alloy, Rare Metal Mat. Eng., 2006, 35(11), p 1696-1699

    Google Scholar 

  8. G.J. Fan, X.P. Song, M.X. Quan, and Z.Q. Hu, Mechanical Alloying and Thermal Stability of Al 67 Ti 25M 8 (M = Cr, Zr, Cu), Metall. Trans. A, 1997, 231(1–2), p 111-116

    Google Scholar 

  9. L. Feng, J.S. Li, Y.W. Cui, L. Huang, H.C. Kou, and L. Zhou, Research on Interdiffusion Behavior of Ti-Zr Binary Alloy in the β Phase, Rare Met. Mater. Eng., 2011, 40(04), p 610-614

    Google Scholar 

  10. Q. Chen, N. Ma, K.S. Wu, and Y.Z. Wang, Quantitative Phase Field Modeling of Diffusion-Controlled Precipitate Growth and Dissolution in Ti-Al-V, Scr. Mater., 2004, 50(4), p 471-476

    Article  Google Scholar 

  11. H. Hu and S.A. Argyropoulos, Mathematical Modelling of Solidification and Melting: A Review, Model. Simul. Mater. Sci. Eng., 1996, 4, p 371-396

    Article  ADS  Google Scholar 

  12. H. Araki, T. Yamane, Y. Minamino, S. Saji, Y. Hana, and S.B. Jung, Anomalous Diffusion of Aluminum in β-Titanium, Metall. Trans. A, 1994, 25(4), p 874-876

    Article  Google Scholar 

  13. S.Y. Lee, O. Taguchi, and Y. Iijima, Diffusion of Alummum in β-Titanium, Mater. Trans., 2010, 51(10), p 1809-1813

    Article  Google Scholar 

  14. I. Thibon, D. Ansel, and T. Gloriant, Interdiffusion in β-Ti-Zr Binary Alloys, J. Alloys Compd., 2009, 470(1–2), p 127-133

    Article  Google Scholar 

  15. F. Yang, F.H. Xiao, S.G. Liu, S.S. Dong, L.H. Huang, Q. Chen, G.M. Cai, H.S. Liu, and Z.P. Jin, Isothermal Section of Al-Ti-Zr Ternary System at 1273K, J. Alloys Compd., 2014, 585, p 325-330

    Article  Google Scholar 

  16. A.G. Nikitin, S.V. Spichak, S.V. Yu, and A.G. Naumovets, Symmetries and Modelling Functions for Diffusion Processes, J. Phys. D, 2009, 42, p 55301

    Article  ADS  Google Scholar 

  17. W.M. Bai, Y.Y. Tian, G.L. Xu, Z.J. Yang, L.B. Liu, P.J. Masset, and L.G. Zhang, Diffusivities and Atomic Mobilities in bcc Ti-Zr-Nb Alloys, Calphad, 2019, 62, p 160-174

    Article  Google Scholar 

  18. Q.J. Wu, J.Y. Wang, Y.Y. Gu, Y.H. Guo, G.L. Xu, and Y.W. Cui, Experimental Diffusion Research on BCC Ti-Al-Sn Ternary Alloys, J. Phase Equilib. Diff., 2018, 39(5), p 724-730

    Article  Google Scholar 

  19. X. Huang, Y.J. Tan, Y.H. Guo, G.L. Xu, and Y.W. Cui, Experimental Diffusion Research on BCC Ti-Mn Binary and Ti-Al-Mn Ternary Alloys, J. Phase Equilib. Diffus., 2018, 39(5), p 702-713

    Article  Google Scholar 

  20. J.S. Kirkaldy, Diffusion in Multicomponent Metallic Systems, Can. J. Phys., 1957, 35(4), p 435-440

    Article  ADS  Google Scholar 

  21. D.P. Whittle and A. Green, The Measurement of Diffusion Coefficients in Ternary Systems, Scr. Mater., 1974, 8(7), p 883-884

    Google Scholar 

  22. C.Y. Wang, G.L. Xu, and Y.W. Cui, Mapping of Diffusion and Nanohardness Properties of Fcc Co-Al-V Alloys Using Ternary Diffusion Couples, Metall. Trans. A, 2017, 48(9), p 4286-4296

    Article  Google Scholar 

  23. L.D. Hall, An Analytical Method of Calculating Variable Diffusion Coefficients, J. Chem. Phys., 1953, 21, p 87-89

    Article  ADS  Google Scholar 

  24. Y. Chen, B. Tang, G.L. Xu, C.Y. Wang, H.C. Kou, J.S. Li, and Y.W. Cui, Diffusion Research in BCC Ti-Al-Mo Ternary Alloys, Metall. Mater. Trans. A, 2014, 45A(4), p 1647-1652

    Article  ADS  Google Scholar 

  25. Y. Chen, J.S. Li, B. Tang, G.L. Xu, H.C. Kou, and Y.W. Cui, Interdiffusion in FCC Co-Al-Ti Ternary Alloys, J. Phase Equilib. Diff., 2015, 36(2), p 127-135

    Article  Google Scholar 

  26. J.S. Kirkaldy, D. Weichert, and Z.U. Haq, Diffusion in Multicomponent Metallic Systems: VI. Some Thermodynamic Properties of the D Matrix and the Corresponding Solutions of the Diffusion Equations, Can. J. Phys., 1963, 41(12), p 2166-2173

    Article  ADS  Google Scholar 

  27. F.O. Shuck and H.L. Toor, Diffusion in the Three Component Liquid System Methyl Alcohol-n-Propyl Alcohol-Isobutyl Alcohol, J. Phys. Chem., 1963, 67(3), p 540-545

    Article  Google Scholar 

  28. Y.Y. Gu, F.J. Fan, Y.H. Guo, G.L. Xu, H. Chang, L. Zhou, and Y.W. Cui, Diffusion and Atomic Mobility of BCC Ti-Al-Nb Alloys: Experimental Determination and Computational Modeling, Calphad, 2018, 62, p 83-91

    Article  Google Scholar 

  29. B. Gao, Y.Y. Gu, Q.J. Wu, Y.H. Guo, and Y.W. Cui, Diffusion Research in BCC Ti-Al-Ni Ternary Alloys, J. Phase Equilib. Diff., 2017, 38(4), p 502-508

    Article  Google Scholar 

  30. T. Takahashi, Ternary Diffusion and Thermodynamic Interaction in the β Solid Solutions of Ti-Al-Co Alloys, J. Jpn. Inst. Met., 2009, 59(8), p 432-438

    Article  Google Scholar 

  31. T. Takahashi and Y. Minamino, Ternary Diffusion and Thermodynamic Interaction in the β Solid Solutions of Ti-Al-Fe Alloys at 1423 K, J. Alloys Compd., 2012, 545, p 168-175

    Article  Google Scholar 

  32. W.B. Li, B. Tang, Y.W. Cui, R. Hu, H. Chang, J.S. Li, and L. Zhou, Assessment of Diffusion Mobility for the bcc Phase of the Ti-Al-Cr System, Calphad, 2011, 35, p 384-390

    Article  Google Scholar 

  33. L. Huang, Y.W. Cui, H. Chang, H. Zhong, J.S. Li, and L. Zhou, Assessment of Atomic Mobilities for bcc Phase of Ti-Al-V System, J. Phase Equilib. Diff., 2010, 31(2), p 135-143

    Article  Google Scholar 

  34. G.M. Hood and R.J. Schultz, Ultra-fast Solute Diffusion in α-Ti and α-Zr, Philos. Mag., 1972, 26(2), p 329-336

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was funded by the Defense Industrial Technology Development Program of China [No. JCKY2018414C020]. YC acknowledges the support from the Natural Science Funds of China [Grant No. 51571113]. GX was funded by the Natural Science Funds of China [Grant No. 51701094] and the Natural Science Funds of Jiangsu Province [Grant No. BK20171014]. FF and YG would like to thank the support from the Synergetic Innovation Center for Advanced Materials, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuwen Cui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, F., Gu, Y., Xu, G. et al. Diffusion Research in BCC Ti-Al-Zr Ternary Alloys. J. Phase Equilib. Diffus. 40, 686–696 (2019). https://doi.org/10.1007/s11669-019-00755-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-019-00755-7

Keywords

Navigation