Skip to main content
Log in

A Neural Network Approach to Predict Gibbs Free Energy of Ternary Solid Solutions

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

We present a data-centric deep learning (DL) approach using neural networks (NNs) to predict the thermodynamics of ternary solid solutions. We explore how NNs can be trained with a dataset of Gibbs free energies computed from a CALPHAD database to predict ternary systems as a function of composition and temperature. We have chosen the energetics of the FCC solid solution phase in 226 binaries consisting of 23 elements at 11 different temperatures to demonstrate the feasibility. The number of binary data points included in the present study is 102,000. We select six ternaries to augment the binary dataset to investigate their influence on the NN prediction accuracy. We examine the sensitivity of data sampling on the prediction accuracy of NNs over selected ternary systems. It is anticipated that the current DL workflow can be further elevated by integrating advanced descriptors beyond the elemental composition and more curated training datasets to improve prediction accuracy and applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Reference

  1. C. T. Sims, in Superalloys 1984 (Fifth International Symposium) (TMS, 1984), pp. 399–419.

  2. N. Saunders, and A.P. Miodownik, CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide. Pergamon, NewYork, 1998.

    Google Scholar 

  3. Y.A. Chang, S. Chen, F. Zhang, X. Yan, F. Xie, R. Schmid-Fetzer, and W.A. Oates, Prog. Mater. Sci., 2004, 49, p 313.

    Article  Google Scholar 

  4. C. Zhang and Y. Yang, MRS Bull. 2022, 47, p 1–10.

  5. C.J. Bartel, S.L. Millican, A.M. Deml, J.R. Rumptz, W. Tumas, A.W. Weimer, and A.M. Holder, Physical Descriptor for the Gibbs Energy of Inorganic Crystalline Solids and Temperature-Dependent Materials Chemistry, Nat. Commun., 2018, 9(1), p 1–10.

    Article  Google Scholar 

  6. J. Yoon, E. Choi, and K. Min, J. Phys. Chem. A, 2021, 125, p 10103.

    Article  Google Scholar 

  7. Y. Mao, H. Yang, Y. Sheng, J. Wang, R. Ouyang, C. Ye, J. Yang, and W. Zhang, ACS Omega, 2021, 6, p 14533.

    Article  Google Scholar 

  8. S.K. Kauwe, J. Graser, A. Vazquez, and T.D. Sparks, Integr. Mater. Manuf. Innov., 2018, 7, p 43.

    Article  Google Scholar 

  9. C.J. Bartel, A. Trewartha, Q. Wang, A. Dunn, A. Jain, and G. Ceder, NPJ Comput. Mater., 2020, 6, p 1.

    Article  Google Scholar 

  10. J. Peng, Y. Yamamoto, J.A. Hawk, E. Lara-Curzio, and D. Shin, NPJ Comput. Mater., 2020, 6, p 141.

    Article  ADS  Google Scholar 

  11. D. Shin, Y. Yamamoto, M.P. Brady, S. Lee, and J.A. Haynes, Acta Mater., 2019, 168, p 321.

    Article  ADS  Google Scholar 

  12. J. Peng, N.H. Gunda, C.A. Bridges, S. Lee, J.A. Haynes, and D. Shin, A Machine Learning Approach to Predict Thermal Expansion of Complex Oxides, Comput. Mater. Sci., 2022, 210, p 111034.

    Article  Google Scholar 

  13. J. Peng, R. Pillai, M. Romedenne, B.A. Pint, G. Muralidharan, J. Allen Haynes, and D. Shin, Data Analytics Approach to Predict High-Temperature Cyclic Oxidation Kinetics of NiCr-Based Alloys, NPJ Mater. Degrad., 2021, 5(1), p 1–8.

    Article  Google Scholar 

  14. S. Lee, J. Peng, D. Shin, and Y.S. Choi, Sci. Technol. Adv. Mater., 2019, 20, p 972.

    Article  Google Scholar 

  15. W. Huang, P. Martin, and H.L. Zhuang, Acta Mater., 2019, 169, p 225.

    Article  ADS  Google Scholar 

  16. M. Ziatdinov, O. Dyck, A. Maksov, X. Li, X. Sang, K. Xiao, R.R. Unocic, R. Vasudevan, S. Jesse, and S.V. Kalinin, ACS Nano, 2017, 11, p 12742.

    Article  Google Scholar 

  17. S.V. Kalinin, B.G. Sumpter, and R.K. Archibald, Nat. Mater., 2015, 14, p 973.

    Article  ADS  Google Scholar 

  18. X. Chong, S.-L. Shang, A.M. Krajewski, J.D. Shimanek, W. Du, Y. Wang, J. Feng, D. Shin, A.M. Beese, and Z.-K. Liu, J. Phys. Condens. Matter, 2021, 33, p 295702.

    Article  Google Scholar 

  19. G.L.W. Hart, T. Mueller, C. Toher, and S. Curtarolo, Nat. Rev. Mater., 2021, 6, p 730.

    Article  ADS  Google Scholar 

  20. J.O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman, Calphad, 2002, 26, p 273.

    Article  Google Scholar 

  21. H. Mao, H.L. Chen, and Q. Chen, J. Phase Equilibria. Diffus., 2017, 38, p 353.

    Article  Google Scholar 

  22. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, 33rd Conference on Neural Information Processing Systems, vol. 32. (2019). https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

  23. K. He, X. Zhang, S. Ren, and J. Sun, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 770–778.

  24. D.P. Kingma and J. Ba, in 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings 1 (2014).

  25. K.H. Kumar, and P. Wollants, Some Guidelines for Thermodynamic Optimisation of Phase Diagrams, J. Alloys Compd., 2001, 320(2), p 189–198.

    Article  Google Scholar 

  26. D. Shin, and Z.-K. Liu, Calphad, 2008, 32, p 74.

    Article  Google Scholar 

  27. D. Shin, A. van de Walle, Y. Wang, and Z.-K. Liu, Phys. Rev. B, 2007, 76, p 144204.

    Article  ADS  Google Scholar 

  28. C. Jiang, and B.P. Uberuaga, Phys. Rev. Lett., 2016, 116, p 105501.

    Article  ADS  Google Scholar 

  29. C. Wen, Y. Zhang, C. Wang, D. Xue, Y. Bai, S. Antonov, L. Dai, T. Lookman, and Y. Su, Acta Mater., 2019, 170, p 109.

    Article  ADS  Google Scholar 

  30. S. Guo, Mater. Sci. Technol. (United Kingdom), 2015, 31, p 1223.

    Article  ADS  Google Scholar 

  31. L. Ward, A. Agrawal, A. Choudhary, and C. Wolverton, npj Comp. Mater., 2016, 2(1), pp. 1–7.

  32. A.T. Dinsdale, Calphad, 1991, 15, p 317.

    Article  Google Scholar 

  33. I. Ansara, N. Dupin, H.L. Lukas, and B. Sundman, J. Alloys Compd., 1997, 247, p 20.

    Article  Google Scholar 

  34. N. Dupin, I. Ansara, and B. Sundman, Calphad, 2001, 25, p 279.

    Article  Google Scholar 

  35. S.M. Liang, and R. Schmid-Fetzer, Calphad, 2015, 51, p 252.

    Article  Google Scholar 

  36. I. Ansara, A.T. Dinsdale, and M.H. Rand, in COST 507: Definition of Thermochemical and Thermophysical Properties to Provide a Database for the Development of New Light Alloys. Thermochemical Database for Light Metal Alloys, vol 2 (European Cooperation in the Field of Scientific and Technical Research, 1998)

  37. J. Huang, B. Yang, H. Chen, and H. Wang, J. Phase Equilibria. Diffus., 2015, 36, p 357.

    Article  Google Scholar 

Download references

Acknowledgements

This research is sponsored by the Artificial Intelligence Initiative as part of the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy under contract DE-AC05-00OR22725. MLP would like to thank Vladimir Protopopescu and Sam T. Reeves for their suggestions and comments. DS would like to thank In-Ho Jung for his valuable comments and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongwon Shin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special tribute issue of the Journal of Phase Equilibria and Diffusion dedicated to the memory of former JPED Editor-in-Chief John Morral. The special issue was organized by Prof. Yongho Sohn, University of Central Florida; Prof. Ji-Cheng Zhao, University of Maryland; Dr. Carelyn Campbell, National Institute of Standards and Technology; and Dr. Ursula Kattner, National Institute of Standards and Technology.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4705 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laiu, P., Yang, Y., Lupo Pasini, M. et al. A Neural Network Approach to Predict Gibbs Free Energy of Ternary Solid Solutions. J. Phase Equilib. Diffus. 43, 916–930 (2022). https://doi.org/10.1007/s11669-022-01010-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-022-01010-2

Keywords

Navigation