Skip to main content

Advertisement

Log in

Dysfunction in the Fronto-Parietal Network in Attention Deficit Hyperactivity Disorder (ADHD): An fMRI Study

  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

ADHD is associated with spatial working memory deficits, thought to be subserved by dysfunction of neural circuits. In this study we aimed to further examine fronto-parietal dysfunction in ADHD by examining brain activation associated with the Raven’s Progressive Matrices task, a visuo-spatial pattern sequencing task involving relational reasoning and thereby placing high-demand loading on the prefrontal cortex. Functional MRI was conducted on twelve right-handed 8–12 year old boys with ADHD-combined type and 12 right-handed, age and performance IQ-matched, healthy boys as they completed items from the Raven’s Progressive Matrices. Our findings further confirm striatum and parietal lobe dysfunction in ADHD. Furthermore, dysfunction in lateral prefrontal regions was found. In addition to lateral prefrontal, striatum and posterior parietal regions, the temporal lobe was also less active. These findings suggest deficits in a widespread ‘functional network’ in ADHD that may be fundamental for visuo-spatial information processing and relational reasoning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–381.

    Article  PubMed  CAS  Google Scholar 

  • Aman, C. J., Roberts Jr., R. J., & Pennington, B. F. (1998). A neuropsychological examination of the underlying deficit in attention deficit hyperactivity disorder: Frontal lobe versus right parietal lobe theories. Developmental Psychology, 34(5), 956–969.

    Article  PubMed  CAS  Google Scholar 

  • Barkley, R. A. (1997). Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychological Bulletin, 121(1), 65–94.

    Article  PubMed  CAS  Google Scholar 

  • Bellgrove, M. A., Hawi, Z., Kirley, A., Fitzgerald, M., Gill, M., & Robertson, I. H. (2005). Association between dopamine transporter (DAT1) genotype, left-sided inattention, and an enhanced response to methylphenidate in attention-deficit hyperactivity disorder. Neuropsychopharmacology, 30(12), 2290–2297.

    Article  PubMed  CAS  Google Scholar 

  • Berman, K. F., Illowsky, B. P., & Weinberger, D. R. (1988). Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. IV. Further evidence for regional and behavioral specificity.[see comment]. Archives of General Psychiatry, 45(7), 616–622.

    PubMed  CAS  Google Scholar 

  • Booth, J. R., Burman, D. D., Meyer, J. R., Lei, Z., Trommer, B. L., Davenport, N. D., et al. (2005). Larger deficits in brain networks for response inhibition than for visual selective attention in attention deficit hyperactivity disorder (ADHD). Journal of Child Psychology & Psychiatry & Allied Disciplines, 46(1), 94–111.

    Article  Google Scholar 

  • Brown, R. T., Freeman, W. S., Perrin, J. M., Stein, M. T., Amler, R. W., Feldman, H. M., et al. (2001). Prevalence and assessment of attention-deficit/hyperactivity disorder in primary care settings. Pediatrics, 107(3), 1–11 (see comment).

    Article  Google Scholar 

  • Bunge, S. A., Kahn, I., Wallis, J. D., Miller, E. K., & Wagner, A. D. (2003). Neural circuits subserving the retrieval and maintenance of abstract rules. Journal of Neurophysiology, 90(5), 3419–3428.

    Article  PubMed  Google Scholar 

  • Chelune, G. J., Ferguson, W., Koon, R., & Dickey, T. O. (1986). Frontal lobe disinhibition in attention deficit disorder. Child Psychiatry & Human Development, 16(4), 221–234.

    Article  CAS  Google Scholar 

  • Christoff, K., Prabhakaran, V., Dorfman, J., Zhao, Z., Kroger, J. K., Holyoak, K. J., et al. (2001). Rostrolateral prefrontal cortex involvement in relational integration during reasoning. Neuroimage, 14(5), 1136–1149.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, M. S., Kosslyn, S. M., Breiter, H. C., DiGirolamo, G. J., Thomas, W. L., Anderson, A. K., et al. (1996). Changes in cortical activity during mental rotation: A mapping study using functional MRI. Brain, 119, 89–100.

    Article  PubMed  Google Scholar 

  • Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G. L., & Petersen, S. E. (1991). Selective and divided attention during visual discriminations of shape, color, and speed: Functional anatomy by positron emission tomography. Journal of Neuroscience, 11(8), 2383–2402.

    PubMed  CAS  Google Scholar 

  • Durston, S., Mulder, M., Casey, B. J., Ziermans, T., & van Engeland, H. (2006). Activation in ventral prefrontal cortex is sensitive to genetic vulnerability for attention-deficit hyperactivity disorder. Biological Psychiatry, 60(10), 1062–1070.

    Article  PubMed  CAS  Google Scholar 

  • Durston, S., Tottenham, N. T., Thomas, K. M., Davidson, M. C., Eigsti, I. M., Yang, Y., et al. (2003). Differential patterns of striatal activation in young children with and without ADHD. Biological Psychiatry, 53(10), 871–878.

    Article  PubMed  Google Scholar 

  • Eacott, M. J., & Gaffan, D. (1992). Inferotemporal-frontal disconnection: The uncinate fascicle and visual associative learning in monkeys. European Journal of Neuroscience, 4(12), 1320–1332.

    Article  PubMed  Google Scholar 

  • Giedd, J. N., Blumenthal, J., Molloy, E., & Castellanos, F. X. (2001). Brain imaging of attention deficit/hyperactivity disorder. Annals of the New York Academy of Sciences, 931, 33–49.

    Article  PubMed  CAS  Google Scholar 

  • Haier, R. J., Siegel, B. V., Neuchterlein, K. H., Hazlett, E., Wu, J. C., Paek, J., et al. (1988). Cortical glucose metabolic rate correlates of abstract reasoning and attention studied with Positron Emission Tomography. Intelligence, 12, 199–217.

    Article  Google Scholar 

  • Hamlett, K. W., Pellegrini, D. S., & Conners, C. K. (1987). An investigation of executive processes in the problem-solving of attention deficit disorder-hyperactive children. Journal of Pediatric Psychology, 12(2), 227–240.

    Article  PubMed  CAS  Google Scholar 

  • Lee, K. H., Choi, Y. Y., Gray, J. R., Cho, S. H., Chae, J. H., Lee, S., et al. (2006). Neural correlates of superior intelligence: Stronger recruitment of posterior parietal cortex. Neuroimage, 29(2), 578–586.

    Article  PubMed  Google Scholar 

  • Makris, N., Biederman, J., Valera, E. M., Bush, G., Kaiser, J., Kennedy, D. N., et al. (2007). Cortical thinning of the attention and executive function networks in adults with attention-deficit/hyperactivity disorder. Cerebral Cortex, 17(6), 1364–1375.

    Article  PubMed  Google Scholar 

  • Mesulam, M. M. (1981). A cortical network for directed attention and unilateral neglect. Annals of Neurology, 10(4), 309–325.

    Article  PubMed  CAS  Google Scholar 

  • Passingham, R. E., Toni, I., & Rushworth, M. F. (2000). Specialisation within the prefrontal cortex: The ventral prefrontal cortex and associative learning. Experimental Brain Research, 133(1), 103–113.

    Article  CAS  Google Scholar 

  • Prabhakaran, V., Smith, J. A., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. (1997). Neural substrates of fluid reasoning: An fMRI study of neocortical activation during performance of the Raven’s Progressive Matrices Test. Cognitive Psychology, 33(1), 43–63.

    Article  PubMed  CAS  Google Scholar 

  • Raven, J. C. (1989). Standard progressive matrices:Sets A,B & C. Melbourne: Australian Council for Education Research.

    Google Scholar 

  • Rubia, K., Overmeyer, S., Taylor, E., Brammer, M., Williams, S. C., Simmons, A., et al. (1999). Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: A study with functional MRI. American Journal of Psychiatry, 156(6), 891–896.

    PubMed  CAS  Google Scholar 

  • Schachar, R. (1991). Childhood hyperactivity. Journal of Child Psychology & Psychiatry & Allied Disciplines, 32(1), 155–191.

    Article  CAS  Google Scholar 

  • Schoechlin, C., & Engel, R. R. (2005). Neuropsychological performance in adult attention-deficit hyperactivity disorder: Meta-analysis of empirical data. Archives of Clinical Neuropsychology, 20(6), 727–744.

    Article  PubMed  Google Scholar 

  • Seargeant, J. A., Geurts, H. M., & Oosterlaan, J. (2002). How Specific is the deficit of executive functioning for attention-deficit hyperactivity disorder. Behavioral Brain Reviews, 130, 3–28.

    Article  Google Scholar 

  • Shafritz, K. M., Marchione, K. E., Gore, J. C., Shaywitz, S. E., & Shaywitz, B. A. (2004). The effects of methylphenidate on neural systems of attention in attention deficit hyperactivity disorder. American Journal of Psychiatry, 161(11), 1990–1997.

    Article  PubMed  Google Scholar 

  • Silk, T., Vance, A., Rinehart, N., Egan, G., O’Boyle, M., Bradshaw, J. L., et al. (2005). Decreased fronto-parietal activation in Attention Deficit Hyperactivity Disorder, combined type (ADHD-CT): An fMRI study. British Journal of Psychiatry, 187(3), 282–283.

    Article  PubMed  CAS  Google Scholar 

  • Sowell, E. R., Thompson, P. M., Welcome, S. E., Henkenius, A. L., Toga, A. W., & Peterson, B. S. (2003). Cortical abnormalities in children and adolescents with attention-deficit hyperactivity disorder. Lancet, 362(9397), 1699–1707.

    Article  PubMed  Google Scholar 

  • Sturm, W., & Willmes, K. (2001). On the functional neuroanatomy of intrinsic and phasic alertness. Neuroimage, 14(1 Pt 2), S76–S84.

    Article  PubMed  CAS  Google Scholar 

  • Tamm, L., Menon, V., & Reiss, A. L. (2006). Parietal attentional system aberrations during target detection in adolescents with attention deficit hyperactivity disorder: Event-related fMRI evidence.[see comment]. American Journal of Psychiatry, 163(6), 1033–1043.

    Article  PubMed  Google Scholar 

  • Tant, J. L., & Douglas, V. I. (1982). Problem solving in hyperactive, normal, and reading-disabled boys. Journal of Abnormal Child Psychology, 10(3), 285–306.

    Article  PubMed  CAS  Google Scholar 

  • Toni, I., Rushworth, M. F., & Passingham, R. E. (2001). Neural correlates of visuomotor associations. Spatial rules compared with arbitrary rules. Experimental Brain Research, 141(3), 359–369.

    Article  CAS  Google Scholar 

  • Vaidya, C. J., Bunge, S. A., Dudukovic, N. M., Zalecki, C. A., Elliott, G. R., & Gabrieli, J. D. (2005). Altered neural substrates of cognitive control in childhood ADHD: Evidence from functional magnetic resonance imaging. American Journal of Psychiatry, 162(9), 1605–1613.

    Article  PubMed  Google Scholar 

  • Vance, A., Silk, T., Casey, M., Rinehart, N., Bradshaw, J. L., Prakash, C., et al. (2007). Right parietal dsyfunction in children with attention deficit hyperactivity disorder, combined type: A functional MRI study. Molecular Psychiatry, 12(9), 826–832.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Eric Ormond Baker Trust, the National Health and Medical Research Council (384419), by a research project grant (2005) from the Murdoch Children’s Research Institute, and the Royal Children’s Hospital staff and patients. RC was supported by a Fellowship of the NHMRC (217025). TS was supported by a Fellowship of the Australian Rotary Health Research Fund, and is currently supported by the NHMRC Australian Clinical Research Fellowship.

Disclosure

The authors report no conflicts of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Silk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silk, T.J., Vance, A., Rinehart, N. et al. Dysfunction in the Fronto-Parietal Network in Attention Deficit Hyperactivity Disorder (ADHD): An fMRI Study. Brain Imaging and Behavior 2, 123–131 (2008). https://doi.org/10.1007/s11682-008-9021-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-008-9021-8

Keywords

Navigation