Skip to main content
Log in

FKBP5 modulates the hippocampal connectivity deficits in depression: a study in twins

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

The hippocampus is a key modulator of stress responses underlying depressive behavior. While FKBP5 has been found associated with a large number of stress-related outcomes and hippocampal features, its potential role in modifying the hippocampal communication transfer mechanisms with other brain regions remains largely unexplored. The putative genetic or environmental roots of the association between depression and structural connectivity alterations of the hippocampus were evaluated combining diffusion weighted imaging with both a quantitative genetics approach and molecular information on the rs1360780 single nucleotide polymorphism, in a sample of 54 informative monozygotic twins (27 pairs). Three main results were derived from the present analyses. First, graph-theoretical measures of hippocampal connectivity were altered in depression. Specifically, decreased connectivity strength and increased network centrality of the right hippocampus were found in depressed individuals. Second, these hippocampal alterations are potentially driven by familial factors (genes plus shared environment). Third, there is an additive interaction effect between FKBP5’s rs1360780 variant and the graph-theoretical metrics of hippocampal connectivity to influence depression risk. Our data reveals alterations of the communication patterns between the hippocampus and the rest of the brain in depression, effects potentially driven by overall familial factors (genes plus shared twin environment) and modified by the FKBP5 gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguinis, H., & Stone-Romero, E. F. (1997). Methodological artifacts in moderated multiple regression and their effects on statistical power. Journal of Applied Psychology, 82(1), 192.

    Article  Google Scholar 

  • Alemany, S., Mas, A., Goldberg, X., Falcon, C., Fatjo-Vilas, M., Arias, B., et al. (2013). Regional gray matter reductions are associated with genetic liability for anxiety and depression: an MRI twin study. Journal of Affective Disorders, 149(1–3), 175–181. doi:10.1016/j.jad.2013.01.019.

    Article  PubMed  Google Scholar 

  • Appel, K., Schwahn, C., Mahler, J., Schulz, A., Spitzer, C., Fenske, K., et al. (2011). Moderation of adult depression by a polymorphism in the FKBP5 gene and childhood physical abuse in the general population. Neuropsychopharmacology, 36(10), 1982–1991. doi:10.1038/npp.2011.81.

    Article  PubMed  PubMed Central  Google Scholar 

  • Begg, M. D., & Parides, M. K. (2003). Separation of individual-level and cluster-level covariate effects in regression analysis of correlated data. Statistics in Medicine, 22(16), 2591–2602. doi:10.1002/sim.1524.

    Article  PubMed  Google Scholar 

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B: Methodological, 57, 289–300.

    Google Scholar 

  • Binder, E. B., Bradley, R. G., Liu, W., Epstein, M. P., Deveau, T. C., Mercer, K. B., et al. (2008). Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA, 299(11), 1291–1305. doi:10.1001/jama.299.11.1291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binder, E. B., Salyakina, D., Lichtner, P., Wochnik, G. M., Ising, M., Putz, B., et al. (2004). Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nature Genetics, 36(12), 1319–1325. doi:10.1038/ng1479.

    Article  CAS  PubMed  Google Scholar 

  • Bohlken, M. M., Mandl, R. C., Brouwer, R. M., van den Heuvel, M. P., Hedman, A. M., Kahn, R. S., et al. (2014). Heritability of structural brain network topology: a DTI study of 156 twins. Human Brain Mapping, 35(10), 5295–5305. doi:10.1002/hbm.22550.

    Article  PubMed  Google Scholar 

  • Borgatti, S. P., & Everett, M. G. (2006). A graph-theoretic perspective on centrality. Social Networks, 28(4), 466–484. doi:10.1016/j.socnet.2005.11.005.

    Article  Google Scholar 

  • Bounova, G., & de Weck, O. (2012). Overview of metrics and their correlation patterns for multiple-metric topology analysis on heterogeneous graph ensembles. Physical Review E, 85(1), 016117.

    Article  Google Scholar 

  • Campbell, S., Marriott, M., Nahmias, C., & MacQueen, G. M. (2004). Lower hippocampal volume in patients suffering from depression: a meta-analysis. The American Journal of Psychiatry, 161(4), 598–607.

    Article  PubMed  Google Scholar 

  • Clarke, M. C., Tanskanen, A., Huttunen, M., Leon, D. A., Murray, R. M., Jones, P. B., et al. (2011). Increased risk of schizophrenia from additive interaction between infant motor developmental delay and obstetric complications: evidence from a population-based longitudinal study. The American Journal of Psychiatry, 168(12), 1295–1302. doi:10.1176/appi.ajp.2011.11010011.

    Article  PubMed  Google Scholar 

  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed., ). Hillsdale, N.J.: L. Erlbaum Associates.

    Google Scholar 

  • Cook, R. J., & Farewell, V. T. (1996). Multiplicity considerations in the design and analysis of clinical trials. Journal of the Royal Statistical Society: Series A (Statistics in Society), 159, 93–110.

    Article  Google Scholar 

  • Córdova-Palomera, A. (2015). mztwinreg: regression models for monozygotic twin data.

  • Cordova-Palomera, A., Goldberg, X., Alemany, S., Nenadic, I., Gasto, C., & Fananas, L. (2014). Letter to the editor: low birth weight and adult depression: eliciting their association. Psychological Medicine, 44(5), 1117–1119. doi:10.1017/S0033291713002754.

    Article  CAS  PubMed  Google Scholar 

  • Champely, S. (2012). pwr: basic functions for power analysis.

  • Chang, L. C., Walker, L., & Pierpaoli, C. (2012). Informed RESTORE: a method for robust estimation of diffusion tensor from low redundancy datasets in the presence of physiological noise artifacts. Magnetic Resonance in Medicine, 68(5), 1654–1663. doi:10.1002/mrm.24173.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, Y., Andres, A. L., Frotscher, M., & Baram, T. Z. (2012). Tuning synaptic transmission in the hippocampus by stress: the CRH system. Frontiers in Cellular Neuroscience, 6, 13. doi:10.3389/fncel.2012.00013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Reus, M. A., & van den Heuvel, M. P. (2013). The parcellation-based connectome: limitations and extensions. NeuroImage, 80, 397–404. doi:10.1016/j.neuroimage.2013.03.053.

    Article  PubMed  Google Scholar 

  • DeMaris, A. (1995). A tutorial in logistic regression. Journal of Marriage and the Family, 57, 956–968.

    Article  Google Scholar 

  • Derogatis, L. R., & Melisaratos, N. (1983). The brief symptom inventory: an introductory report. Psychological Medicine, 13(3), 595–605.

    Article  CAS  PubMed  Google Scholar 

  • Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., et al. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31(3), 968–980. doi:10.1016/j.neuroimage.2006.01.021.

    Article  PubMed  Google Scholar 

  • Dinov, I. D., Petrosyan, P., Liu, Z., Eggert, P., Zamanyan, A., Torri, F., et al. (2014). The perfect neuroimaging-genetics-computation storm: collision of petabytes of data, millions of hardware devices and thousands of software tools. Brain Imaging and Behavior, 8(2), 311–322. doi:10.1007/s11682-013-9248-x.

    PubMed  PubMed Central  Google Scholar 

  • Domschke, K., & Reif, A. (2012). Behavioral genetics of affective and anxiety disorders. Current Topics in Behavioral Neurosciences, 12, 463–502. doi:10.1007/7854_2011_185.

    Article  PubMed  Google Scholar 

  • Eisch, A. J., & Petrik, D. (2012). Depression and hippocampal neurogenesis: a road to remission? Science, 338(6103), 72–75. doi:10.1126/science.1222941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fani, N., Gutman, D., Tone, E. B., Almli, L., Mercer, K. B., Davis, J., et al. (2013). FKBP5 and attention bias for threat: associations with hippocampal function and shape. JAMA Psychiatry, 70(4), 392–400. doi:10.1001/2013.jamapsychiatry.210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fani, N., King, T. Z., Reiser, E., Binder, E. B., Jovanovic, T., Bradley, B., et al. (2014). FKBP5 genotype and structural integrity of the posterior cingulum. Neuropsychopharmacology, 39(5), 1206–1213. doi:10.1038/npp.2013.322.

    Article  CAS  PubMed  Google Scholar 

  • First, M. B. (1997). Structured clinical interview for DSM-IV axis I disorders: SCID - I: clinician version: administration booklet. Washington, D.C.: American Psychiatric Press.

    Google Scholar 

  • Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., et al. (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3), 341–355.

    Article  CAS  PubMed  Google Scholar 

  • Fornito, A., & Bullmore, E. T. (2015). Connectomics: a new paradigm for understanding brain disease. European Neuropsychopharmacology, 25(5), 733–748. doi:10.1016/j.euroneuro.2014.02.011.

    Article  CAS  PubMed  Google Scholar 

  • Fujii, T., Hori, H., Ota, M., Hattori, K., Teraishi, T., Sasayama, D., et al. (2014a). Effect of the common functional FKBP5 variant (rs1360780) on the hypothalamic-pituitary-adrenal axis and peripheral blood gene expression. Psychoneuroendocrinology, 42, 89–97. doi:10.1016/j.psyneuen.2014.01.007.

    Article  CAS  PubMed  Google Scholar 

  • Fujii, T., Ota, M., Hori, H., Hattori, K., Teraishi, T., Matsuo, J., et al. (2014b). The common functional FKBP5 variant rs1360780 is associated with altered cognitive function in aged individuals. Scientific Reports, 4, 6696. doi:10.1038/srep06696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glahn, D. C., Thompson, P. M., & Blangero, J. (2007). Neuroimaging endophenotypes: strategies for finding genes influencing brain structure and function. Human Brain Mapping, 28(6), 488–501. doi:10.1002/hbm.20401.

    Article  PubMed  Google Scholar 

  • Glickman, M. E., Rao, S. R., & Schultz, M. R. (2014). False discovery rate control is a recommended alternative to Bonferroni-type adjustments in health studies. Journal of Clinical Epidemiology, 67(8), 850–857. doi:10.1016/j.jclinepi.2014.03.012.

    Article  PubMed  Google Scholar 

  • Graffelman, J., & Moreno, V. (2013). The mid p-value in exact tests for hardy-Weinberg equilibrium. Statistical Applications in Genetics and Molecular Biology, 12(4), 433–448. doi:10.1515/sagmb-2012-0039.

    Article  PubMed  Google Scholar 

  • Graham, J., Salimi-Khorshidi, G., Hagan, C., Walsh, N., Goodyer, I., Lennox, B., et al. (2013). Meta-analytic evidence for neuroimaging models of depression: state or trait? Journal of Affective Disorders, 151(2), 423–431. doi:10.1016/j.jad.2013.07.002.

    Article  PubMed  Google Scholar 

  • Guilherme, R., Drunat, S., Delezoide, A. L., Oury, J. F., & Luton, D. (2009). Zygosity and chorionicity in triplet pregnancies: new data. Human Reproduction, 24(1), 100–105. doi:10.1093/humrep/den364.

    Article  PubMed  Google Scholar 

  • Han, S. S., Rosenberg, P. S., Garcia-Closas, M., Figueroa, J. D., Silverman, D., Chanock, S. J., et al. (2012). Likelihood ratio test for detecting gene (G)-environment (E) interactions under an additive risk model exploiting G-E independence for case-control data. American Journal of Epidemiology, 176(11), 1060–1067. doi:10.1093/aje/kws166.

    Article  PubMed  PubMed Central  Google Scholar 

  • Harrel, F. (2013). rms: regression modeling strategies.

  • Hulshoff Pol, H., & Bullmore, E. (2013). Neural networks in psychiatry. European Neuropsychopharmacology, 23(1), 1–6. doi:10.1016/j.euroneuro.2012.12.004.

    Article  CAS  PubMed  Google Scholar 

  • Kendler, K. S., & Gardner, C. O. (2010). Interpretation of interactions: guide for the perplexed. The British Journal of Psychiatry, 197(3), 170–171. doi:10.1192/bjp.bp.110.081331.

    Article  PubMed  Google Scholar 

  • Kessler, R. C., Berglund, P., Demler, O., Jin, R., Merikangas, K. R., & Walters, E. E. (2005). Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the national comorbidity survey replication. Archives of General Psychiatry, 62(6), 593–602. doi:10.1001/archpsyc.62.6.593.

    Article  PubMed  Google Scholar 

  • Kirchheiner, J., Lorch, R., Lebedeva, E., Seeringer, A., Roots, I., Sasse, J., et al. (2008). Genetic variants in FKBP5 affecting response to antidepressant drug treatment. Pharmacogenomics, 9(7), 841–846. doi:10.2217/14622416.9.7.841.

    Article  CAS  PubMed  Google Scholar 

  • Klengel, T., Mehta, D., Anacker, C., Rex-Haffner, M., Pruessner, J. C., Pariante, C. M., et al. (2013). Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nature Neuroscience, 16(1), 33–41. doi:10.1038/nn.3275.

    Article  CAS  PubMed  Google Scholar 

  • Koenis, M. M., Brouwer, R. M., van den Heuvel, M. P., Mandl, R. C., van Soelen, I. L., Kahn, R. S., et al. (2015). Development of the brain's structural network efficiency in early adolescence: a longitudinal DTI twin study. Human Brain Mapping, 36(12), 4938–4953. doi:10.1002/hbm.22988.

    Article  PubMed  Google Scholar 

  • Korgaonkar, M. S., Fornito, A., Williams, L. M., & Grieve, S. M. (2014). Abnormal structural networks characterize major depressive disorder: a connectome analysis. Biological Psychiatry, 76(7), 567–574. doi:10.1016/j.biopsych.2014.02.018.

    Article  PubMed  Google Scholar 

  • Lavebratt, C., Aberg, E., Sjoholm, L. K., & Forsell, Y. (2010). Variations in FKBP5 and BDNF genes are suggestively associated with depression in a Swedish population-based cohort. Journal of Affective Disorders, 125(1–3), 249–255. doi:10.1016/j.jad.2010.02.113.

    Article  CAS  PubMed  Google Scholar 

  • Leistedt, S. J., & Linkowski, P. (2013). Brain, networks, depression, and more. European Neuropsychopharmacology, 23(1), 55–62. doi:10.1016/j.euroneuro.2012.10.011.

    Article  CAS  PubMed  Google Scholar 

  • Lekman, M., Laje, G., Charney, D., Rush, A. J., Wilson, A. F., Sorant, A. J., et al. (2008). The FKBP5-gene in depression and treatment response–an association study in the sequenced treatment alternatives to relieve depression (STAR*D) cohort. Biological Psychiatry, 63(12), 1103–1110. doi:10.1016/j.biopsych.2007.10.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leonardo, E. D., & Hen, R. (2006). Genetics of affective and anxiety disorders. Annual Review of Psychology, 57, 117–137. doi:10.1146/annurev.psych.57.102904.190118.

    Article  CAS  PubMed  Google Scholar 

  • Leow, A., Ajilore, O., Zhan, L., Arienzo, D., GadElkarim, J., Zhang, A., et al. (2013). Impaired inter-hemispheric integration in bipolar disorder revealed with brain network analyses. Biological Psychiatry, 73(2), 183–193. doi:10.1016/j.biopsych.2012.09.014.

    Article  PubMed  Google Scholar 

  • Liao, Y., Huang, X., Wu, Q., Yang, C., Kuang, W., Du, M., et al. (2013). Is depression a disconnection syndrome? Meta-analysis of diffusion tensor imaging studies in patients with MDD. Journal of Psychiatry & Neuroscience, 38(1), 49–56. doi:10.1503/jpn.110180.

    Article  Google Scholar 

  • Lim, S., Han, C. E., Uhlhaas, P. J., & Kaiser, M. (2015). Preferential detachment during human brain development: age-and sex-specific structural connectivity in diffusion tensor imaging (DTI) data. Cerebral Cortex, 25(6), 1477–1489. doi:10.1093/cercor/bht333.

    Article  PubMed  Google Scholar 

  • Liu, W., Jamshidian, M., & Zhang, Y. (2004). Multiple comparison of several linear regression models. Journal of the American Statistical Association, 99(466), 395–403.

    Article  Google Scholar 

  • Long, Z., Duan, X., Wang, Y., Liu, F., Zeng, L., Zhao, J. P., et al. (2015). Disrupted structural connectivity network in treatment-naive depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 56, 18–26. doi:10.1016/j.pnpbp.2014.07.007.

    Article  Google Scholar 

  • MacQueen, G. M., Campbell, S., McEwen, B. S., Macdonald, K., Amano, S., Joffe, R. T., et al. (2003). Course of illness, hippocampal function, and hippocampal volume in major depression. Proceedings of the National Academy of Sciences of the United States of America, 100(3), 1387–1392. doi:10.1073/pnas.0337481100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maguire, E. A., Frackowiak, R. S., & Frith, C. D. (1997). Recalling routes around London: activation of the right hippocampus in taxi drivers. The Journal of Neuroscience, 17(18), 7103–7110.

    CAS  PubMed  Google Scholar 

  • Mandelli, L., & Serretti, A. (2013). Gene environment interaction studies in depression and suicidal behavior: an update. Neuroscience and Biobehavioral Reviews, 37(10 Pt 1), 2375–2397. doi:10.1016/j.neubiorev.2013.07.011.

    Article  PubMed  Google Scholar 

  • Marazziti, D., Consoli, G., Picchetti, M., Carlini, M., & Faravelli, L. (2010). Cognitive impairment in major depression. European Journal of Pharmacology, 626(1), 83–86. doi:10.1016/j.ejphar.2009.08.046.

    Article  CAS  PubMed  Google Scholar 

  • Menke, A., Klengel, T., Rubel, J., Bruckl, T., Pfister, H., Lucae, S., et al. (2013). Genetic variation in FKBP5 associated with the extent of stress hormone dysregulation in major depression. Genes, Brain, and Behavior, 12(3), 289–296. doi:10.1111/gbb.12026.

    Article  CAS  PubMed  Google Scholar 

  • Miller, B. R., & Hen, R. (2015). The current state of the neurogenic theory of depression and anxiety. Current Opinion in Neurobiology, 30, 51–58. doi:10.1016/j.conb.2014.08.012.

    Article  CAS  PubMed  Google Scholar 

  • Misic, B., Goni, J., Betzel, R. F., Sporns, O., & McIntosh, A. R. (2014). A network convergence zone in the hippocampus. PLoS Computational Biology, 10(12), e1003982. doi:10.1371/journal.pcbi.1003982.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mori, S., Crain, B. J., Chacko, V. P., & van Zijl, P. C. (1999). Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Annals of Neurology, 45(2), 265–269.

    Article  CAS  PubMed  Google Scholar 

  • Mosing, M. A., Gordon, S. D., Medland, S. E., Statham, D. J., Nelson, E. C., Heath, A. C., et al. (2009). Genetic and environmental influences on the co-morbidity between depression, panic disorder, agoraphobia, and social phobia: a twin study. Depression and Anxiety, 26(11), 1004–1011. doi:10.1002/da.20611.

    Article  PubMed  PubMed Central  Google Scholar 

  • Murray, C. J., Vos, T., Lozano, R., Naghavi, M., Flaxman, A. D., Michaud, C., et al. (2012). Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet, 380(9859), 2197–2223. doi:10.1016/S0140-6736(12)61689-4.

    Article  PubMed  Google Scholar 

  • Nakagawa, S. (2004). A farewell to Bonferroni: the problems of low statistical power and publication bias. Behavioral Ecology, 15(6), 1044–1045.

    Article  Google Scholar 

  • Northoff, G. (2013). Gene, brains, and environment-genetic neuroimaging of depression. Current Opinion in Neurobiology, 23(1), 133–142. doi:10.1016/j.conb.2012.08.004.

    Article  CAS  PubMed  Google Scholar 

  • O’brien, R. M. (2007). A caution regarding rules of thumb for variance inflation factors. Quality and Quantity, 41(5), 673–690.

    Article  Google Scholar 

  • Pagliaccio, D., Luby, J. L., Bogdan, R., Agrawal, A., Gaffrey, M. S., Belden, A. C., et al. (2014). Stress-system genes and life stress predict cortisol levels and amygdala and hippocampal volumes in children. Neuropsychopharmacology, 39(5), 1245–1253. doi:10.1038/npp.2013.327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parasuraman, R., & Jiang, Y. (2012). Individual differences in cognition, affect, and performance: behavioral, neuroimaging, and molecular genetic approaches. NeuroImage, 59(1), 70–82. doi:10.1016/j.neuroimage.2011.04.040.

    Article  PubMed  Google Scholar 

  • Perneger, T. V. (1998). What's wrong with Bonferroni adjustments. BMJ, 316(7139), 1236–1238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piekema, C., Kessels, R. P., Mars, R. B., Petersson, K. M., & Fernandez, G. (2006). The right hippocampus participates in short-term memory maintenance of object-location associations. NeuroImage, 33(1), 374–382. doi:10.1016/j.neuroimage.2006.06.035.

    Article  PubMed  Google Scholar 

  • Qin, J., Wei, M., Liu, H., Yan, R., Luo, G., Yao, Z., et al. (2014). Abnormal brain anatomical topological organization of the cognitive-emotional and the frontoparietal circuitry in major depressive disorder. Magnetic Resonance in Medicine, 72(5), 1397–1407. doi:10.1002/mrm.25036.

    Article  PubMed  Google Scholar 

  • Development Core Team, R. (2011). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

    Google Scholar 

  • Ressler, K. J., & Mayberg, H. S. (2007). Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nature Neuroscience, 10(9), 1116–1124. doi:10.1038/nn1944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose, E. J., & Donohoe, G. (2013). Brain vs behavior: an effect size comparison of neuroimaging and cognitive studies of genetic risk for schizophrenia. Schizophrenia Bulletin, 39(3), 518–526. doi:10.1093/schbul/sbs056.

    Article  PubMed  Google Scholar 

  • Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: uses and interpretations. NeuroImage, 52(3), 1059–1069. doi:10.1016/j.neuroimage.2009.10.003.

    Article  PubMed  Google Scholar 

  • Ruiperez, M., Ibáñez, M. I., Lorente, E., Moro, M., & Ortet, G. (2001). Psychometric properties of the Spanish version of the BSI: contributions to the relationship between personality and psychopathology. European Journal of Psychological Assessment, 17(3), 241.

    Article  Google Scholar 

  • Saveanu, R. V., & Nemeroff, C. B. (2012). Etiology of depression: genetic and environmental factors. The Psychiatric Clinics of North America, 35(1), 51–71. doi:10.1016/j.psc.2011.12.001.

    Article  PubMed  Google Scholar 

  • Snyder, J. S., Soumier, A., Brewer, M., Pickel, J., & Cameron, H. A. (2011). Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature, 476(7361), 458–461. doi:10.1038/nature10287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens, M. C., Skudlarski, P., Pearlson, G. D., & Calhoun, V. D. (2009). Age-related cognitive gains are mediated by the effects of white matter development on brain network integration. NeuroImage, 48(4), 738–746. doi:10.1016/j.neuroimage.2009.06.065.

    Article  PubMed  PubMed Central  Google Scholar 

  • Teicher, M. H., Anderson, C. M., Ohashi, K., & Polcari, A. (2014). Childhood maltreatment: altered network centrality of cingulate, precuneus, temporal pole and insula. Biological Psychiatry, 76(4), 297–305. doi:10.1016/j.biopsych.2013.09.016.

    Article  PubMed  Google Scholar 

  • Thompson, P. M., Stein, J. L., Medland, S. E., Hibar, D. P., Vasquez, A. A., Renteria, M. E., et al. (2014). The ENIGMA consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging and Behavior, 8(2), 153–182. doi:10.1007/s11682-013-9269-5.

    PubMed  PubMed Central  Google Scholar 

  • van den Heuvel, M. P., & Sporns, O. (2011). Rich-club organization of the human connectome. The Journal of Neuroscience, 31(44), 15775–15786. doi:10.1523/JNEUROSCI.3539-11.2011.

    Article  PubMed  Google Scholar 

  • Van Horn, J. D. (2014). Neuroimaging and genetics in aging and age-related disease. Brain Imaging and Behavior, 8(2), 141–142. doi:10.1007/s11682-014-9299-7.

    PubMed  PubMed Central  Google Scholar 

  • VanderWeele, T. J. (2012). Sample size and power calculations for additive interactions. Epidemiol Method, 1(1), 159–188. doi:10.1515/2161-962X.1010.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wickham, H. (2009). ggplot2: elegant graphics for data analysis: Springer Science & Business Media, New York.

  • Wittchen, H. U., Kessler, R. C., Beesdo, K., Krause, P., Hofler, M., & Hoyer, J. (2002). Generalized anxiety and depression in primary care: prevalence, recognition, and management. J Clin Psychiatry, 63(Suppl 8), 24–34.

    PubMed  Google Scholar 

  • Wong, T. P., Howland, J. G., Robillard, J. M., Ge, Y., Yu, W., Titterness, A. K., et al. (2007). Hippocampal long-term depression mediates acute stress-induced spatial memory retrieval impairment. Proceedings of the National Academy of Sciences of the United States of America, 104(27), 11471–11476. doi:10.1073/pnas.0702308104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zalesky, A., & Fornito, A. (2009). A DTI-derived measure of cortico-cortical connectivity. IEEE Transactions on Medical Imaging, 28(7), 1023–1036. doi:10.1109/TMI.2008.2012113.

    Article  PubMed  Google Scholar 

  • Zbozinek, T. D., Rose, R. D., Wolitzky-Taylor, K. B., Sherbourne, C., Sullivan, G., Stein, M. B., et al. (2012). Diagnostic overlap of generalized anxiety disorder and major depressive disorder in a primary care sample. Depression and Anxiety, 29(12), 1065–1071. doi:10.1002/da.22026.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zou, Y. F., Wang, F., Feng, X. L., Li, W. F., Tao, J. H., Pan, F. M., et al. (2010). Meta-analysis of FKBP5 gene polymorphisms association with treatment response in patients with mood disorders. Neuroscience Letters, 484(1), 56–61. doi:10.1016/j.neulet.2010.08.019.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to the Medical Image core facility of the Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) for the technical help. Supported by the Spanish SAF2008-05674-C03-01, European Twins Study Network on Schizophrenia Research Training Network (grant number EUTwinsS, MRTN-CT-2006-035987), the Catalan 2014SGR1636 and the Ministry of Science and Innovation (PIM2010ERN-00642) in frame of ERA-NET NEURON. MPvdH was supported by a VENI grant of the Dutch Council for Research (VENI: 451-12-001 NWO) and a Fellowship of the Brain Center Rudolf Magnus. The funders had no role in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication. Ximena Goldberg and Silvia Alemany contributed to sample collection. MRI technicians César Garrido and Santi Sotés also contributed to this work. Anna Valldeperas contributed to genotyping.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lourdes Fañanás.

Ethics declarations

Conflict of interest

Aldo Córdova-Palomera, Marcel A. de Reus, Mar Fatjó-Vilas, Carles Falcón, Nuria Bargalló, Martijn P. van den Heuvel, and Lourdes Fañanás declare that they have no conflict of interest.

Informed consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, and the applicable revisions at the time of the investigation. Informed consent was obtained from all subjects for being included in the study.

Additional information

Martijn P. van den Heuvel and Lourdes Fañanás contributed equally to this work.

Electronic supplementary material

ESM 1

(PDF 331 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Córdova-Palomera, A., de Reus, M.A., Fatjó-Vilas, M. et al. FKBP5 modulates the hippocampal connectivity deficits in depression: a study in twins. Brain Imaging and Behavior 11, 62–75 (2017). https://doi.org/10.1007/s11682-015-9503-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-015-9503-4

Keywords

Navigation