Skip to main content

Advertisement

Log in

White matter changes following experimental pediatric traumatic brain injury: an advanced diffusion-weighted imaging investigation

  • SI: Pacific Rim 2020
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Pediatric traumatic brain injury (pTBI) is a major community health concern. Due to ongoing maturation, injury to the brain at a young age can have devastating consequences in later life. However, how pTBI affects brain development, including white matter maturation, is still poorly understood. Here, we used advanced diffusion weighted imaging (DWI) to assess chronic white matter changes after experimental pTBI. Mice at post-natal day 21 sustained a TBI using the controlled cortical impact model and magnetic resonance imaging (MRI) was performed at 6 months post-injury using a 4.7 T Bruker scanner. Four diffusion shells with 81 directions and b-values of 1000, 3000, 5000, and 7000s/mm2 were acquired and analyzed using MRtrix3 software. Advanced DWI metrics, including fiber density, fiber cross-section and a combined fiber density and cross-section measure, were investigated together with three track-weighted images (TWI): the average pathlength map, mean curvature and the track density image. These advanced metrics were compared to traditional diffusion tensor imaging (DTI) metrics which indicated that TBI injured mice had reduced fractional anisotropy and increased radial diffusivity in the white matter when compared to age-matched sham controls. Consistent with previous findings, fiber density and TWI metrics appeared to be more sensitive to white matter changes than DTI metrics, revealing widespread reductions in fiber density and TWI metrics in pTBI mice compared to sham controls. These results provide additional support for the use of advanced DWI metrics in assessing white matter degeneration following injury and highlight the chronic outcomes that can follow pTBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson, V., Catroppa, C., Morse, S., Haritou, F., & Rosenfeld, J. (2005). Attentional and processing skills following traumatic brain injury in early childhood. Brain Injury, 19(9), 699–710.

    PubMed  CAS  Google Scholar 

  • Anderson, V., & Moore, C. (1995). Age at injury as a predictor of outcome following pediatric head injury: A longitudinal perspective. Child Neuropsychology, 1(3), 187–202.

    Google Scholar 

  • Anderson, V. A., Morse, S. A., Catroppa, C., Haritou, F., & Rosenfeld, J. V. (2004). Thirty month outcome from early childhood head injury: a prospective analysis of neurobehavioural recovery. Brain, 127(12), 2608–2620.

    PubMed  Google Scholar 

  • Arfanakis, K., Haughton, V. M., Carew, J. D., Rogers, B. P., Dempsey, R. J., & Meyerand, M. E. (2002). Diffusion tensor MR imaging in diffuse axonal injury. American Journal of Neuroradiology, 23(5), 794–802.

    PubMed  PubMed Central  Google Scholar 

  • Armstrong, R. C., Mierzwa, A. J., Marion, C. M., & Sullivan, G. M. (2016). White matter involvement after TBI: Clues to axon and myelin repair capacity. Experimental Neurology, 275(3), 328–333.

    PubMed  CAS  Google Scholar 

  • Assaf, Y., Blumenfeld-Katzir, T., Yovel, Y., & Basser, P. J. (2008). AxCaliber: A method for measuring axon diameter distribution from diffusion MRI. Magnetic Resonance in Medicine, 59(6), 1347–1354.

    PubMed  PubMed Central  Google Scholar 

  • Benson, R. R., Meda, S. A., Vasudevan, S., Kou, Z., Govindarajan, K. A., Hanks, R. A., & Coplin, W. (2007). Global white matter analysis of diffusion tensor images is predictive of injury severity in traumatic brain injury. Journal of Neurotrauma, 24(3), 446–459.

    PubMed  Google Scholar 

  • Calamante, F., Tournier, J.-D., Jackson, G. D., & Connelly, A. (2010). Track-density imaging (TDI): super-resolution white matter imaging using whole-brain track-density mapping. Neuroimage, 53(4), 1233–1243.

    PubMed  Google Scholar 

  • Calamante, F., Tournier, J.-D., Kurniawan, N. D., Yang, Z., Gyengesi, E., Galloway, G. J.,.. . Connelly, A. (2012a). Super-resolution track-density imaging studies of mouse brain: comparison to histology. Neuroimage, 59(1), 286–296.

    PubMed  Google Scholar 

  • Calamante, F., Tournier, J.-D., Smith, R. E., & Connelly, A. (2012b). A generalised framework for super-resolution track-weighted imaging. Neuroimage, 59(3), 2494–2503.

    PubMed  Google Scholar 

  • Dhollander, T., Zanin, J., Nayagam, B. A., Rance, G., & Connelly, A. (2018). Feasibility and benefits of 3-tissue constrained spherical deconvolution for studying the brains of babies. Paper presented at the Proceedings of the 26th annual meeting of the International Society of Magnetic Resonance in Medicine.

  • Ewing-Cobbs, L., Prasad, M. R., Swank, P., Kramer, L., Cox Jr, C. S., Fletcher, J. M.,.. . Hasan, K. M. (2008). Arrested development and disrupted callosal microstructure following pediatric traumatic brain injury: relation to neurobehavioral outcomes. Neuroimage, 42(4), 1305–1315.

    PubMed  Google Scholar 

  • Faul, M., Xu, L., Wald, M., Coronado, V., & Dellinger, A. M. (2010). Traumatic brain injury in the United States: national estimates of prevalence and incidence, 2002–2006. Injury Prevention, 16(Suppl 1), A268–A268.

    Google Scholar 

  • Flygt, J., Djupsjö, A., Lenne, F., & Marklund, N. (2013). Myelin loss and oligodendrocyte pathology in white matter tracts following traumatic brain injury in the rat. European Journal of Neuroscience, 38(1), 2153–2165.

    CAS  Google Scholar 

  • Frank, L. R. (2002). Characterization of anisotropy in high angular resolution diffusion-weighted MRI. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 47(6), 1083–1099.

    Google Scholar 

  • Genc, S., Anderson, V., Ryan, N. P., Malpas, C. B., Catroppa, C., Beauchamp, M. H., & Silk, T. J. (2017). Recovery of white matter following pediatric traumatic brain injury depends on injury severity. Journal of Neurotrauma, 34(4), 798–806.

    PubMed  Google Scholar 

  • Giza, C. C., & Prins, M. L. (2006). Is being plastic fantastic? Mechanisms of altered plasticity after developmental traumatic brain injury. Developmental Neuroscience, 28(4–5), 364–379.

    PubMed  CAS  Google Scholar 

  • Harris, N. G., Verley, D., Gutman, B. A., & Sutton, R. (2016). Bi-directional changes in fractional anisotropy after experiment TBI: disorganization and reorganization? Neuroimage, 133, 129–143.

    PubMed  CAS  Google Scholar 

  • Huisman, T. A., Schwamm, L. H., Schaefer, P. W., Koroshetz, W. J., Shetty-Alva, N., Ozsunar, Y.,.. . Sorensen, A. G. (2004). Diffusion tensor imaging as potential biomarker of white matter injury in diffuse axonal injury. American Journal of Neuroradiology, 25(3), 370–376.

    PubMed  PubMed Central  Google Scholar 

  • Jensen, J. H., Helpern, J. A., & Tabesh, A. (2014). Leading non-Gaussian corrections for diffusion orientation distribution function. NMR in Biomedicine, 27(2), 202–211.

    PubMed  PubMed Central  Google Scholar 

  • Kamper, J. E., Pop, V., Fukuda, A. M., Ajao, D. O., Hartman, R. E., & Badaut, J. (2013). Juvenile traumatic brain injury evolves into a chronic brain disorder: behavioral and histological changes over 6 months. Experimental Neurology, 250, 8–19.

    PubMed  PubMed Central  Google Scholar 

  • Kumar, R., Husain, M., Gupta, R. K., Hasan, K. M., Haris, M., Agarwal, A. K., & Narayana, P. A. (2009). Serial changes in the white matter diffusion tensor imaging metrics in moderate traumatic brain injury and correlation with neuro-cognitive function. Journal of Neurotrauma, 26(4), 481–495.

    PubMed  Google Scholar 

  • Lazar, M., Jensen, J. H., Xuan, L., & Helpern, J. A. (2008). Estimation of the orientation distribution function from diffusional kurtosis imaging. Magnetic Resonance in Medicine, 60(4), 774–781.

    PubMed  PubMed Central  Google Scholar 

  • Levin, H. S., Benavidez, D., Verger-Maestre, K., Perachio, N., Song, J., Mendelsohn, D., & Fletcher, J. (2000). Reduction of corpus callosum growth after severe traumatic brain injury in children. Neurology, 54(3), 647–647.

    PubMed  CAS  Google Scholar 

  • Lu, H., Jensen, J. H., Ramani, A., & Helpern, J. A. (2006). Three-dimensional characterization of non-gaussian water diffusion in humans using diffusion kurtosis imaging. NMR in Biomedicine, 19, 236–247.

    PubMed  Google Scholar 

  • Mac Donald, C. L., Dikranian, K., Bayly, P., Holtzman, D., & Brody, D. (2007). Diffusion tensor imaging reliably detects experimental traumatic axonal injury and indicates approximate time of injury. Journal of Neuroscience, 27(44), 11869–11876.

    PubMed  CAS  Google Scholar 

  • Malhotra, A., Sepehrizadeh, T., Dhollander, T., Wright, D., Castillo-Melendez, M., Sutherland, A. E., … Miller, S. L. (2019). Advanced MRI analysis to detect white matter brain injury in growth restricted newborn lambs. NeuroImage: Clinical, 24, 101991.

    Google Scholar 

  • Merkley, T. L., Bigler, E. D., Wilde, E. A., McCauley, S. R., Hunter, J. V., & Levin, H. S. (2008). Diffuse changes in cortical thickness in pediatric moderate-to-severe traumatic brain injury. Journal of Neurotrauma, 25(11), 1343–1345.

    PubMed  PubMed Central  Google Scholar 

  • Newcombe, V., Williams, G., Nortje, J., Bradley, P., Harding, S., Smielewski, P., ... Hutchinson, P. (2007). Analysis of acute traumatic axonal injury using diffusion tensor imaging. British journal of neurosurgery, 21(4), 340–348.

  • Nigro, S., Bianco M. G., Arabia, G., Morelli, M., Nisticò, R., Novellino, F., ... Quattrone, A. (2019). Track density imaging in progressive supranuclear palsy: a pilot study. Human Brain Mapping, 40(6), 1729–1737.

  • Norenberg, M. D., Smith, J., & Marcillo, A. (2004). The pathology of human spinal cord injury: defining the problems. New Rochelle: Mary Ann Liebert, Inc.

  • Palacios, E. M., Fernandez-Espejo, D., Junque, C., Sanchez-Carrion, R., Roig, T., Tormos, J. M., & Vendrell, P. (2011). Diffusion tensor imaging differences relate to memory deficits in diffuse traumatic brain injury. BMC Neurology, 11(1), 24.

    PubMed  PubMed Central  Google Scholar 

  • Pannek, K., Mathias, J. L., Bigler, E. D., Brown, G., Taylor, J. D., & Rose, S. E. (2011). The average pathlength map: a diffusion MRI tractography-derived index for studying brain pathology. Neuroimage, 55(1), 133–141.

    PubMed  Google Scholar 

  • Potts, M. B., Koh, S.-E., Whetstone, W. D., Walker, B. A., Yoneyama, T., Claus, C. P.,.. . Noble-Haeusslein, L. J. (2006). Traumatic injury to the immature brain: inflammation, oxidative injury, and iron-mediated damage as potential therapeutic targets. NeuroRx : the journal of the American Society for Experimental NeuroTherapeutics, 3(2), 143–153.

    CAS  Google Scholar 

  • Pullela, R., Raber, J., Pfankuch, T., Ferriero, D. M., Claus, C. P., Koh, S.-E., & Noble-Haeusslein, L. J. (2006). Traumatic injury to the immature brain results in progressive neuronal loss, hyperactivity and delayed cognitive impairments. Developmental Neuroscience, 28(4–5), 396–409.

    PubMed  CAS  Google Scholar 

  • Raffelt, D. A., Smith, R. E., Ridgway, G. R., Tournier, J.-D., Vaughan, D. N., Rose, S.,.. . Connelly, A. (2015). Connectivity-based fixel enhancement: Whole-brain statistical analysis of diffusion MRI measures in the presence of crossing fibres. Neuroimage, 117, 40–55.

    PubMed  Google Scholar 

  • Raffelt, D. A., Tournier, J.-D., Smith, R. E., Vaughan, D. N., Jackson, G., Ridgway, G. R., & Connelly, A. (2017). Investigating white matter fibre density and morphology using fixel-based analysis. Neuroimage, 144, 58–73.

    PubMed  Google Scholar 

  • Robinson, S., Winer, J. L., Berkner, J., Chan, L. A., Denson, J. L., Maxwell, J. R.,.. . Meehan, W. P. (2016). Imaging and serum biomarkers reflecting the functional efficacy of extended erythropoietin treatment in rats following infantile traumatic brain injury. Journal of Neurosurgery: Pediatrics, 17(6), 739–755.

    PubMed  Google Scholar 

  • Ryan, N. P., Anderson, V., Godfrey, C., Beauchamp, M. H., Coleman, L., Eren, S., & Catroppa, C. (2014). Predictors of very-long-term sociocognitive function after pediatric traumatic brain injury: evidence for the vulnerability of the immature “social brain”. Journal of Neurotrauma, 31(7), 649–657.

    PubMed  Google Scholar 

  • Ryan, N. P., van Bijnen, L., Catroppa, C., Beauchamp, M. H., Crossley, L., Hearps, S., & Anderson, V. (2016). Longitudinal outcome and recovery of social problems after pediatric traumatic brain injury (TBI): Contribution of brain insult and family environment. International Journal of Developmental Neuroscience, 49, 23–30.

    PubMed  Google Scholar 

  • Semple, B. D., O’Brien, T. J., Gimlin, K., Wright, D. K., Kim, S. E., Casillas-Espinosa, P. M., & Noble-Haeusslein, L. J. (2017). Interleukin-1 receptor in seizure susceptibility after traumatic injury to the pediatric brain. The Journal of Neuroscience, 37(33), 7864–7877. https://doi.org/10.1523/jneurosci.0982-17.2017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Semple, B. D., Trivedi, A., Gimlin, K., & Noble-Haeusslein, L. J. (2015). Neutrophil elastase mediates acute pathogenesis and is a determinant of long-term behavioral recovery after traumatic injury to the immature brain. Neurobiology of Disease, 74, 263–280.

    PubMed  CAS  Google Scholar 

  • Smith, S. M., & Nichols, T. E. (2009). Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage, 44(1), 83–98.

    Google Scholar 

  • Song, S.-K., Sun, S.-W., Ju, W.-K., Lin, S.-J., Cross, A. H., & Neufeld, A. H. (2003). Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage, 20(3), 1714–1722.

    PubMed  Google Scholar 

  • Suskauer, S. J., & Huisman, T. A. (2009). Neuroimaging in pediatric traumatic brain injury: current and future predictors of functional outcome. Developmental Disabilities Research Reviews, 15(2), 117–123.

    PubMed  PubMed Central  Google Scholar 

  • Tournier, J.-D., Mori, S., & Leemans, A. (2011). Diffusion tensor imaging and beyond. Magnetic Resonance in Medicine, 65(6), 1532–1556.

    PubMed  PubMed Central  Google Scholar 

  • Wilde, E. A., Ayoub, K. W., Bigler, E. D., Chu, Z. D., Hunter, J. V., Wu, T. C.,.. . Levin, H. S. (2012). Diffusion tensor imaging in moderate-to-severe pediatric traumatic brain injury: changes within an 18 month post-injury interval. Brain imaging and Behavior, 6(3), 404–416.

    PubMed  Google Scholar 

  • Wilde, E. A., Bigler, E. D., Hunter, J. V., Fearing, M. A., Scheibel, R. S., Newsome, M. R.,.. . Levin, H. S. (2007). Hippocampus, amygdala, and basal ganglia morphometrics in children after moderate-to‐severe traumatic brain injury. Developmental Medicine & Child Neurology, 49(4), 294–299.

    Google Scholar 

  • Wortman, R. C., Meconi, A., Neale, K. J., Brady, R. D., McDonald, S. J., Christie, B. R., & Shultz, S. R. (2018). Diffusion MRI abnormalities in adolescent rats given repeated mild traumatic brain injury. Annals of Clinical and Translational Neurology, 5(12), 1588–1598. https://doi.org/10.1002/acn3.667.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wozniak, J. R., Krach, L., Ward, E., Mueller, B. A., Muetzel, R., Schnoebelen, S.,.. . Lim, K. O. (2007). Neurocognitive and neuroimaging correlates of pediatric traumatic brain injury: a diffusion tensor imaging (DTI) study. Archives of Clinical Neuropsychology, 22(5), 555–568.

    PubMed  Google Scholar 

  • Wright, D. K., Trezise, J., Kamnaksh, A., Bekdash, R., Johnston, L. A., Ordidge, R., & O’Brien, T. J. (2016). Behavioral, blood, and magnetic resonance imaging biomarkers of experimental mild traumatic brain injury. Scientific Reports, 6, 28713.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wright, D. K., Johnston, L. A., Kershaw, J., Ordidge, R., O’Brien, T. J., & Shultz, S. R. (2017a). Changes in apparent fiber density and track-weighted imaging metrics in white matter following experimental traumatic brain injury. Journal of Neurotrauma, 34(13), 2109–2118.

    PubMed  Google Scholar 

  • Wright, D. K., Liu, S., Van Der Poel, C., McDonald, S. J., Brady, R. D., Taylor, L., & O’Brien, T. J. (2017b). Traumatic brain injury results in cellular, structural and functional changes resembling motor neuron disease. Cerebral Cortex, 27(9), 4503–4515.

  • Wright, D. K., O’Brien, T. J., Shultz, S. R., & Mychasiuk, R. (2017c). Sex matters: repetitive mild traumatic brain injury in adolescent rats. Annals of Clinical and Translational Neurology, 4(9), 640–654.

  • Wright, D. K., Brady, R. D., Kamnaksh, A., Trezise, J., Sun, M., McDonald, S. J., & Johnston, L. A. (2019). Repeated mild traumatic brain injuries induce persistent changes in plasma protein and magnetic resonance imaging biomarkers in the rat. Scientific Reports, 9(1), 1–13.

    Google Scholar 

  • Zhang, H., Schneider, T., Wheeler-Kingshott, C. A., & Alexander, D. C. (2012). NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage, 61(4), 1000–1016.

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the facilities, and the scientific and technical assistance of the National Imaging Facility at the Florey Institute of Neuroscience and Mental Health, Parkville.

Funding

This work was supported by the National Health and Medical Research Council to BS [R. D. Wright Biomedical Career Development Fellowship, number: 1141347; Project grant, number: 1122456] and to DKW [Investigator grant, number: 1174040].

Author information

Authors and Affiliations

Authors

Contributions

Author contributions included conception and study design (DKW and BS), data acquisition (DKW), statistical analysis (DKW and AZ), interpretation of results (All authors), drafting the manuscript work or revising it critically for important intellectual content (All authors) and approval of final version to be published and agreement to be accountable for the integrity and accuracy of all aspects of the work (All authors).

Corresponding author

Correspondence to David K. Wright.

Ethics declarations

Conflict of interest

Authors have no conflict of interest to declare. 

Animal subjects

Authors verify that the approval of the institutional animal ethics committee at the University of Melbourne was obtained and experiments performed according to the Australian Guidelines for the Care and Use of Laboratory Animals.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Bridgette D. Semple and David K. Wright are co-senior authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamani, A., O’Brien, T.J., Kershaw, J. et al. White matter changes following experimental pediatric traumatic brain injury: an advanced diffusion-weighted imaging investigation. Brain Imaging and Behavior 15, 2766–2774 (2021). https://doi.org/10.1007/s11682-020-00433-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-020-00433-0

Keywords

Navigation