Skip to main content

Advertisement

Log in

Changes in Intestinal Permeability after Roux-en-Y Gastric Bypass

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

Roux-en-Y gastric bypass (RYGB) interferes considerably with the anatomy and physiology of the gastrointestinal tract. The study of intestinal permeability can provide important information regarding changes in the structure and function of the mucosal barrier after the procedure.

Methods

The urinary excretion rates of lactulose and mannitol after oral intake of both substances were evaluated. We also evaluated the lactulose/mannitol excretion ratio. Tests were performed during the preoperative period (T0), at the first postoperative month (T1), and at the sixth postoperative month (T6).

Results

The study included 16 morbidly obese patients. The excretion rate of mannitol was significantly lower at T1 compared with T0 and T6 (p = 0.003). There was no significant difference in the excretion rates of lactulose or in the lactulose/mannitol ratio during the three periods. Six patients (37.5 %) exhibited a considerable increase in the excretion rate of lactulose at T6 (4–73 times higher than the preoperative value), accompanied by proportional variations in the lactulose/mannitol ratio.

Conclusions

The significant increase in mannitol excretion rate from T1 to T6 most likely reflects the occurrence of intestinal adaptation (mucosal hyperplasia), which would tend to minimize the malabsorption of macronutrients. A subgroup of patients who undergo RYGB exhibit pronounced increase in their intestinal permeability (assessed by the lactulose/mannitol ratio and the lactulose excretion rate) at T6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lonut V, Bergman RN. Mechanisms responsible for excess weight loss after bariatric surgery. J Diabetes Sci Technol. 2011;5(5):1263–82.

    Google Scholar 

  2. Flancbaum L. Mechanisms of weight loss after bariatric surgery. J Laparoendosc Adv Surg Tech A. 2003;13(4):215–20. PMID: 14561249.

    Article  PubMed  Google Scholar 

  3. Diniz MFHS, Passos VMA, Diniz MTC. Gut-brain communication: how does it stand after bariatric surgery? Curr Opin Clin Nutr Metab Care. 2006;9(5):629–3.

    Article  PubMed  Google Scholar 

  4. Vilela EG, Torres HO, Ferrari ML, et al. Gut permeability to lactulose and mannitol differs in treated Crohn's disease and celiac disease patients and healthy subjects. Braz J Med Biol Res. 2008;41(12):1105–9. PMID: 19148373.

    Article  CAS  PubMed  Google Scholar 

  5. Garcia Vilela E, De Lourdes De Abreu Ferrari M, Oswaldo Da Gama Torres H, et al. Influence of Saccharomyces boulardii on the intestinal permeability of patients with Crohn's disease in remission. Scand J Gastroenterol. 2008;43(7):842–8. PMID: 18584523.

    Article  PubMed  Google Scholar 

  6. Travis S, Menzies I. Intestinal permeability: functional assessment and significance. Clinical science. 1992;82(5):471–88. PMID: 1317756.

    CAS  PubMed  Google Scholar 

  7. Scaldaferri F, Pizzoferrato M, Gerardi V, et al. The gut barrier: new acquisitions and therapeutic approaches. J Clin Gastroenterol. 2012;46(Suppl):S12–7. PMID: 22955350.

    Article  CAS  PubMed  Google Scholar 

  8. Camilleri M, Madsen K, Spiller R, et al. Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol Motil. 2012;24(6):503–12. PMID: 22583600.

    Article  CAS  PubMed  Google Scholar 

  9. Gaggiotti G, Catassi C, Sgattoni C, et al. Modifications of intestinal permeability test induced by biliopancreatic diversion: preliminary results. Obes Surg. 1995;5(4):424–6. PMID: 10733839.

    Article  PubMed  Google Scholar 

  10. Sigalet DL, Martin GR, Poole A. Differential sugar absorption as a marker for adaptation in short bowel syndrome. J Pediatr Surg. 2000;35(5):661–4.

    Article  CAS  PubMed  Google Scholar 

  11. Odstrcil EA, Martinez JG, Santa Ana CA, et al. The contribution of malabsorption to the reduction in net energy absorption after long-limb Roux-en-Y gastric bypass. Am J Clin Nutr. 2010;92(4):704–13. PMID: 20739420.

    Article  CAS  PubMed  Google Scholar 

  12. Seva-Pereira G, Lopes LR, Brandalise NA, et al. Fat absorption after total gastrectomy in rats submitted to Roux-en-Y or Rosanov-like double-transit technique. Acta Cir Bras. 2006;21(6):380–4. PMID: 17160249.

    Article  PubMed  Google Scholar 

  13. Ponsky TA, Brody F, Pucci E. Alterations in gastrointestinal physiology after Roux-en-Y gastric bypass. J Am Coll Surg. 2005;201(1):125–31. PMID: 15978453.

    Article  PubMed  Google Scholar 

  14. Leth RD, Abrahamsson H, Kilander A, et al. Malabsorption of fat after partial gastric resection. A study of pathophysiologic mechanisms. Eur J Surg Acta chir. 1991;157(3):205–8.

    CAS  Google Scholar 

  15. Hess DS. Limb measurements in duodenal switch. Obes Surg. 2003;13(6):966. PMID: 14738693.

    Article  PubMed  Google Scholar 

  16. Savassi-Rocha AL, Diniz MT, Savassi-Rocha PR, et al. Influence of jejunoileal and common limb length on weight loss following Roux-en-Y gastric bypass. Obes Surg. 2008;18(11):1364–8. PMID: 18459021.

    Article  PubMed  Google Scholar 

  17. Stefanidis D, Kuwada TS, Gersin KS. The importance of the length of the limbs for gastric bypass patients—an evidence-based review. Obes Surg. 2011;21(1):119–24. PMID: 20680504.

    Article  PubMed  Google Scholar 

  18. Orci L, Chilcott M, Huber O. Short versus long Roux-limb length in Roux-en-Y gastric bypass surgery for the treatment of morbid and super obesity: a systematic review of the literature. Obes Surg. 2011;21(6):797–804. PMID: 21479976.

    Article  PubMed  Google Scholar 

  19. Cisler JJ, Buchman AL. Intestinal adaptation in short bowel syndrome. J Investig Med. 2005;53(8):402–13. PMID: 16354579.

    Article  CAS  PubMed  Google Scholar 

  20. Fenyo G. Morphological changes of the adapting small intestine deprived of gastric, duodenal, biliary and pancreatic secretions in the rat. Eur Surg Res. 1977;9(2):122–30. PMID: 856595.

    Article  CAS  PubMed  Google Scholar 

  21. Taqi E, Wallace LE, de Heuvel E, et al. The influence of nutrients, biliary-pancreatic secretions, and systemic trophic hormones on intestinal adaptation in a Roux-en-Y bypass model. J Pediatr Surg. 2010;45(5):987–95. PMID: 20438940.

    Article  PubMed  Google Scholar 

  22. Albert V, Young GP, Morton CL, et al. Systemic factors are trophic in bypassed rat small intestine in the absence of luminal contents. Gut. 1990;31(3):311–6. PMID: 2323595.

    Article  CAS  PubMed  Google Scholar 

  23. Miedema BW, Kelly KA, Camilleri M, et al. Human gastric and jejunal transit and motility after Roux gastrojejunostomy. Gastroenterology. 1992;103(4):1133–43. PMID: 1397870.

    CAS  PubMed  Google Scholar 

  24. Seyfried F, Lannoo M, Gsell W, et al. Roux-en-Y gastric bypass in mice—surgical technique and characterisation. Obes Surg. 2012;22(7):1117–25. PMID: 22527601.

    Article  CAS  PubMed  Google Scholar 

  25. Suzuki S, Ramos EJ, Gonçalves CG, et al. Changes in GI hormones and their effect on gastric emptying and transit times after Roux-en-Y gastric bypass in rat model. Surgery. 2005;138(2):283–90.

    Article  PubMed  Google Scholar 

  26. Wang G, Agenor K, Pizot J, et al. Accelerated gastric emptying but no carbohydrate malabsorption 1 year after gastric bypass surgery (BGP). Obes Surg. 2012;22:1263–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Ardila-Hani A, Soffer EE. Review article: the impact of bariatric surgery on gastrointestinal motility. Aliment Pharmacol Ther. 2011;34(8):825–31. PMID: 21854401.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang YM, Liu XL, Xue DB, et al. Myoelectric activity and motility of the Roux limb after cut or uncut Roux-en-Y gastrojejunostomy. World J Gastroenterol. 2006;12(47):7699–704. PMID: 17171803.

    PubMed  Google Scholar 

  29. Spak E, Bjorklund P, Helander HF, et al. Changes in the mucosa of the Roux-limb after gastric bypass surgery. Histopathology. 2010;57(5):680–8. PMID: 21054493.

    Article  PubMed  Google Scholar 

  30. Benjamin MA, McKay DM, Yang PC, et al. Glucagon-like peptide-2 enhances intestinal epithelial barrier function of both transcellular and paracellular pathways in the mouse. Gut. 2000;47:112–9.

    Article  CAS  PubMed  Google Scholar 

  31. Moran GW, O'Neill C, McLaughlin JT. GLP-2 enhances barrier formation and attenuates TNFalpha-induced changes in a Caco-2 cell model of the intestinal barrier. Regul Pept. 2012;178(1–3):95–101. PMID: 22809889.

    Article  CAS  PubMed  Google Scholar 

  32. Cani PD, Possemiers S, Van de Wiele T, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2 driven improvement of gut permeability. Gut. 2009;58:1091–103.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. leRoux CW, Borg C, Wallis K, et al. Gut hypertrophy after gastric bypass is associated with increased glucagon-like peptide 2 and intestinal crypt cell proliferation. Ann Surg. 2010;252(1):50–6.

    Article  Google Scholar 

  34. Ljungmann K, Hartmann B, Kissmeyer-Nielsen P, et al. Time-dependent intestinal adaptation and GLP-2 alterations after small bowel resection in rats. Am J Physiol Gastrointest Liver Physiol. 2001;281(3):G779–85. PMID: 11518690.

    CAS  PubMed  Google Scholar 

  35. Jeppesen PB. Teduglutide, a novel glucagon-like peptide 2 analog, in the treatment of patients with short bowel syndrome. Therap Adv Gastroenterol. 2012;5(3):159–71. PMID: 22570676.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Sigalet DL, Lam V, Boctor D. The assessment, and glucagon-like peptide-2 modulation, of intestinal absorption and function. Semin Pediatr Surg. 2010;19(1):44–9. PMID: 20123273.

    Article  PubMed  Google Scholar 

  37. Sinclair EM, Drucker DJ. Proglucagon-derived peptides: mechanisms of action and therapeutic potential. Physiology (Bethesda). 2005;20:357–65. PMID: 16174875.

    Article  CAS  Google Scholar 

  38. Moreira AP, Texeira TF, Ferreira AB, et al. Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxemia. Br J Nutr. 2012;108(5):801–9.

    Article  CAS  PubMed  Google Scholar 

  39. Frazier TH, DiBaise JK, McClain CJ. Gut microbiota, intestinal permeability, obesity-induced inflammation, and liver injury. JPEN Journal of Parenteral and Enteral Nutrition. 2011;35(5 Suppl):14S–20S. PMID: 21807932.

    Article  CAS  PubMed  Google Scholar 

  40. Illán-Gómez F, Gonzálvez-Ortega M, Orea-Soler I, et al. Obesity and inflammation: change in adiponectin, C-reactive protein, tumour necrosis factor-alpha and interleukin-6 after bariatric surgery. Obes Surg. 2012;22:950–55.

    Article  PubMed  Google Scholar 

  41. Monte SV, Caruana JA, Ghanim H, et al. Reduction in endotoxemia, oxidative and inflammatory stress, and insulin resistance after Roux-en-Y gastric bypass surgery in patients with morbid obesity and type 2 diabetes mellitus. Surgery. 2012;151(4):587–93. PMID: 22088821.

    Article  PubMed  Google Scholar 

  42. Moschen AR, Molnar C, Geiger S, et al. Anti-inflammatory effects of excessive weight loss: potent suppression of adipose interleukin 6 and tumour necrosis factor alpha expression. Gut. 2010;59(9):1259–64. PMID: 20660075.

    Article  CAS  PubMed  Google Scholar 

  43. Dalmas E, Rouault C, Abdennour M, et al. Variations in circulating inflammatory factors are related to changes in calorie and carbohydrate intakes early in the course of surgery-induced weight reduction. Am J Clin Nutr. 2011;94(2):450–8. PMID: 21677057.

    Article  CAS  PubMed  Google Scholar 

  44. Vilarrasa N, Vendrell J, Sánchez-Santos R, et al. Effect of weight loss induced by gastric bypass on proinflammatory interleukin-18, soluble tumour necrosis factor-alfa receptors, C-reactive protein and adiponectin in morbidly obese patients. Clin Endocrinol (Oxf). 2007;67(5):679–86.

    Article  CAS  PubMed  Google Scholar 

  45. Miller GD, Nicklas BJ, Fernandez A. Serial changes in inflammatory biomarkers after Roux-en-Y gastric bypass surgery. Surg Obes Relat Dis. 2011;7(5):618–24. PMID: 21546319.

    Article  PubMed  Google Scholar 

  46. Morinigo R, Casamitjana R, Delgado S, et al. Insulin resistance, inflammation, and the metabolic syndrome following Roux-en-Y gastric bypass surgery in severely obese subjects. Diabetes Care. 2007;30(7):1906–8. PMID: 17468354.

    Article  CAS  PubMed  Google Scholar 

  47. Joao Cabrera E, Valezi AC, Delfino VD, et al. Reduction in plasma levels of inflammatory and oxidative stress indicators after Roux-en-Y gastric bypass. Obes Surg. 2010;20(1):42–9. PMID: 19826889.

    Article  PubMed  Google Scholar 

  48. Jacobsen SH, Olesen SC, Dirksen C, et al. Changes in gastrointestinal hormone responses, insulin sensitivity, and beta-cell function within 2 weeks after gastric bypass in non-diabetic subjects. Obes Surg. 2012;22(7):1084–96.

    Article  CAS  PubMed  Google Scholar 

  49. Woodard GA, Encarnacion B, Downey JR, et al. Probiotics improve outcomes after Roux-en-Y gastric bypass surgery: a prospective randomized trial. J Gastrointest Surg. 2009;13(7):1198–204. PMID: 19381735.

    Article  PubMed  Google Scholar 

  50. Machado JD, Campos CS, Lopes Dah Silva C, et al. Intestinal bacterial overgrowth after Roux-en-Y gastric bypass. Obes Surg. 2008;18(1):139–43. PMID: 18080824.

    Article  PubMed  Google Scholar 

  51. Lakhani SV, Shah HN, Alexander K, et al. Small intestinal bacterial overgrowth and thiamine deficiency after Roux-en-Y gastric bypass surgery in obese patients. Nutr Res. 2008;28(5):293–8. PMID: 19083422.

    Article  CAS  PubMed  Google Scholar 

  52. Furet JP, Kong LC, Tap J, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes. 2010;59(12):3049–57. PMID: 20876719.

    Article  CAS  PubMed  Google Scholar 

  53. Ishida RK, Faintuch J, Paula AM, et al. Microbial flora of the stomach after gastric bypass for morbid obesity. Obes Surg. 2007;17(6):752–8. PMID: 17879574.

    Article  PubMed  Google Scholar 

  54. Li JV, Ashrafian H, Bueter M, et al. Metabolic surgery profoundly influences gut microbial–host metabolic cross-talk. Gut. 2011;60(9):1214–23. PMID: 21572120.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Aron-Wisnewsky J, Dore J, Clement K. The importance of the gut microbiota after bariatric surgery. Nat Rev Gastroenterol Hepatol. 2012;9(10):590–8. PMID: 22926153.

    Article  PubMed  Google Scholar 

  56. Riordan SM, McIver CJ, Wakefield D, et al. Mucosal cytokine production in small-intestinal bacterial overgrowth. Scand J Gastroenterol. 1996;31(10):977–84. PMID: 8898418.

    Article  CAS  PubMed  Google Scholar 

  57. Morris TH, Sorensen SH, Turkington J, et al. Diarrhoea and increased intestinal permeability in laboratory beagles associated with proximal small intestinal bacterial overgrowth. Lab Anim. 1994;28(4):313–9. PMID: 7830370.

    Article  CAS  PubMed  Google Scholar 

  58. Batt RM, Hall EJ, McLean L, et al. Small intestinal bacterial overgrowth and enhanced intestinal permeability in healthy beagles. Am J Vet Res. 1992;53(10):1935–40. PMID: 1456544.

    CAS  PubMed  Google Scholar 

  59. Rutgers HC, Batt RM, Proud FJ, et al. Intestinal permeability and function in dogs with small intestinal bacterial overgrowth. J Small Anim Pract. 1996;37(9):428–34. PMID: 8887203.

    Article  CAS  PubMed  Google Scholar 

  60. Lauritano EC, Valenza V, Sparano L, et al. Small intestinal bacterial overgrowth and intestinal permeability. Scand J Gastroenterol. 2010;45(9):1131–2. PMID: 20443749.

    Article  PubMed  Google Scholar 

  61. Riordan SM, McIver CJ, Williams R. Liver damage in human small intestinal bacterial overgrowth. Am J Gastroenterol. 1998;93(2):234–7. PMID: 9468250.

    Article  CAS  PubMed  Google Scholar 

  62. Riordan SM, McIver CJ, Thomas DH, et al. Luminal bacteria and small-intestinal permeability. Scand J Gastroenterol. 1997;32(6):556–63. PMID: 9200287.

    Article  CAS  PubMed  Google Scholar 

  63. Drenick EJ, Roslyn JJ. Cure of arthritis-dermatitis syndrome due to intestinal bypass by resection of nonfunctional segment of blind loop. Dig Dis Sci. 1990;35(5):656–60.

    Article  CAS  PubMed  Google Scholar 

  64. Tu J, Chan JJ, Yu LL. Bowel bypass syndrome/bowel-associated dermatosis arthritis syndrome post laparoscopic gastric bypass surgery. Australas J Dermatol. 2011;52(1):e5–7. PMID: 21332683.

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

Alexandre Lages Savassi-Rocha, Marco Túlio Costa Diniz, Eduardo Garcia Vilela, Maria de Fátima Haueisen Sander Diniz, Soraya Rodrigues de Almeida Sanches, Aloísio Sales da Cunha, Maria de Lourdes de Abreu Ferrari, Henrique Oswaldo da Gama Torres, Bruno Antonio Maciente, Gabriela Santana Ataliba, Paloma Maciel Araújo, Taciana Bretas Guerra, and Inara Kellen Fonseca Balbino declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Lages Savassi-Rocha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savassi-Rocha, A.L., Diniz, M.T.C., Vilela, E.G. et al. Changes in Intestinal Permeability after Roux-en-Y Gastric Bypass. OBES SURG 24, 184–190 (2014). https://doi.org/10.1007/s11695-013-1084-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-013-1084-y

Keywords

Navigation