Skip to main content

Advertisement

Log in

Body Composition Changes Following a Very-Low-Calorie Pre-Operative Diet in Patients Undergoing Bariatric Surgery

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

Fatty liver in obese patients increases the technical difficulty of bariatric surgery. Pre-operative weight loss with a very-low-calorie diet (VLCD) is commonly used to facilitate surgery. Few studies have quantified the systemic effect of rapid pre-operative weight loss on body composition. The objective of this study is to evaluate body composition changes in bariatric surgery patients undergoing a VLCD.

Methods

Body composition assessments were performed between August 2017 and January 2019 using dual-energy X-ray absorptiometry immediately before and after a 2-week VLCD at St Vincent’s Hospital Melbourne. Data collected prospectively pre- and post-VLCD included total body weight, excess body weight, body mass index (BMI), lean body mass (LBM), fat mass (FM) and bone mineral content (BMC). The pre- and post-operative results were compared.

Results

Forty-four patients completed both the 2-week VLCD and body composition assessments. Following a 2-week VLCD, patients lost a mean of 4.5 kg (range − 0.3 to 9.5) in a total body weight and 8.8% (range − 0.9 to 17.1) of excess body weight, with a mean reduction in body mass index of 1.6 kg/m2 (range − 0.2 to 3.1). Loss of LBM was 2.8 kg and was significantly greater than loss of FM, 1.7 kg (p < 0.05). BMC changes were insignificant.

Conclusion

A VLCD is an effective tool for pre-operative weight reduction. In this cohort, a large amount of the total weight loss was attributed to a loss of lean body mass. The impact of significant lean body mass loss and its relationship to short- and long-term health outcomes warrants further assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. WHO. Obesity and overweight. WHO Fact Sheet. Geneva: WHO; 2018.

    Google Scholar 

  2. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults--the evidence report. National Institutes of Health. Obes Res. 1998;6 Suppl 2:51s–209s.

  3. Busetto L, Pisent C, Rinaldi D, et al. Variation in lipid levels in morbidly obese patients operated with the LAP-BAND adjustable gastric banding system: effects of different levels of weight loss. Obes Surg. 2000;10(6):569–77.

    Article  CAS  PubMed  Google Scholar 

  4. Inge TH, Xanthakos SA, Zeller MH. Bariatric surgery for pediatric extreme obesity: now or later? Int J Obes (2005. 2007;31(1):1–14.

    Article  CAS  Google Scholar 

  5. Mayor S. Obesity surgery achieves long term weight loss and prevents type 2 diabetes, study finds. BMJ. 2017;358:j4376.

    Article  Google Scholar 

  6. Maciejewski ML, Arterburn DE, Van Scoyoc L, et al. Bariatric surgery and long-term durability of weight loss bariatric surgery and long-term weight loss durability bariatric surgery and long-term weight loss durability. JAMA Surg. 2016;151(11):1046–55.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gonzalez-Perez J, Sanchez-Leenheer S, Delgado AR, et al. Clinical impact of a 6-week preoperative very low calorie diet on body weight and liver size in morbidly obese patients. Obes Surg. 2013;23(10):1624–31.

    Article  PubMed  Google Scholar 

  8. Podnos YD, Jimenez JC, Wilson SE, et al. Complications after laparoscopic gastric bypass: a review of 3464 cases. Arch Surg. 2003;138(9):957–61.

    Article  PubMed  Google Scholar 

  9. Fried M, Yumuk V, Oppert JM, et al. Interdisciplinary European guidelines on metabolic and bariatric surgery. Obes Surg. 2014;24(1):42–55.

    Article  CAS  PubMed  Google Scholar 

  10. Gerber P, Anderin C, Thorell A. Weight loss prior to bariatric surgery: an updated review of the literature. Scand J Surg. 2015;104(1):33–9.

    Article  CAS  PubMed  Google Scholar 

  11. Faria SL, Faria OP, de Almeida Cardeal M, et al. Effects of a very low calorie diet in the preoperative stage of bariatric surgery: a randomized trial. Surg Obes Relat Dis. 2015;11(1):230–7.

    Article  PubMed  Google Scholar 

  12. Picot J, Jones J, Colquitt JL, et al. The clinical effectiveness and cost-effectiveness of bariatric (weight loss) surgery for obesity: a systematic review and economic evaluation. Health Technol Assess. 2009;13(41):1–190. 215-357, iii-iv

    Article  CAS  PubMed  Google Scholar 

  13. Busetto L. Visceral obesity and the metabolic syndrome: effects of weight loss. Nutr Metab Cardiovasc Dis. 2001;11(3):195–204.

    CAS  PubMed  Google Scholar 

  14. Schwartz ML, Drew RL, Chazin-Caldie M. Laparoscopic Roux-en-Y gastric bypass: preoperative determinants of prolonged operative times, conversion to open gastric bypasses, and postoperative complications. Obes Surg. 2003;13(5):734–8.

    Article  PubMed  Google Scholar 

  15. Van Nieuwenhove Y, Dambrauskas Z, Campillo-Soto A, et al. Preoperative very low-calorie diet and operative outcome after laparoscopic gastric bypass: a randomized multicenter study. Arch Surg. 2011;146(11):1300–5.

    Article  PubMed  Google Scholar 

  16. Colles SL, Dixon JB, Marks P, et al. Preoperative weight loss with a very-low-energy diet: quantitation of changes in liver and abdominal fat by serial imaging. Am J Clin Nutr. 2006;84(2):304–11.

    Article  CAS  PubMed  Google Scholar 

  17. Edholm D, Kullberg J, Karlsson FA, et al. Changes in liver volume and body composition during 4 weeks of low calorie diet before laparoscopic gastric bypass. Surg Obes Relat Dis. 2015;11(3):602–6.

    Article  PubMed  Google Scholar 

  18. Alvarado R, Alami RS, Hsu G, et al. The impact of preoperative weight loss in patients undergoing laparoscopic Roux-en-Y gastric bypass. Obes Surg. 2005;15(9):1282–6.

    Article  CAS  PubMed  Google Scholar 

  19. Alami RS, Morton JM, Schuster R, et al. Is there a benefit to preoperative weight loss in gastric bypass patients? A prospective randomized trial. Surg Obes Relat Dis. 2007;3(2):141–5. discussion 5-6

    Article  PubMed  Google Scholar 

  20. Huerta S, Dredar S, Hayden E, et al. Preoperative weight loss decreases the operative time of gastric bypass at a Veterans Administration hospital. Obes Surg. 2008;18(5):508–12.

    Article  PubMed  Google Scholar 

  21. Livhits M, Mercado C, Yermilov I, et al. Does weight loss immediately before bariatric surgery improve outcomes: a systematic review. Surg Obes Relat Dis. 2009;5(6):713–21.

    Article  PubMed  Google Scholar 

  22. Edholm D, Kullberg J, Haenni A, et al. Preoperative 4-week low-calorie diet reduces liver volume and intrahepatic fat, and facilitates laparoscopic gastric bypass in morbidly obese. Obes Surg. 2011;21(3):345–50.

    Article  PubMed  Google Scholar 

  23. Still CD, Benotti P, Wood GC, et al. Outcomes of preoperative weight loss in high-risk patients undergoing gastric bypass surgery. Arch Surg. 2007;142(10):994–8. discussion 9

    Article  PubMed  Google Scholar 

  24. Cassie S, Menezes C, Birch DW, et al. Effect of preoperative weight loss in bariatric surgical patients: a systematic review. Surg Obes Relat Dis. 2011;7(6):760–7. discussion 7

    Article  PubMed  Google Scholar 

  25. Lewis MC, Phillips ML, Slavotinek JP, et al. Change in liver size and fat content after treatment with Optifast very low calorie diet. Obes Surg. 2006;16(6):697–701.

    Article  PubMed  Google Scholar 

  26. Hoie LH, Bruusgaard D, Thom E. Reduction of body mass and change in body composition on a very low calorie diet. Int J Obes Relat Metab Disord. 1993;17(1):17–20.

    CAS  PubMed  Google Scholar 

  27. Tsai AG, Wadden TA. The evolution of very-low-calorie diets: an update and meta-analysis. Obesity (Silver Spring). 2006;14(8):1283–93.

    Article  Google Scholar 

  28. Very low-calorie diets. National Task Force on the Prevention and Treatment of Obesity, National Institutes of Health. JAMA. 1993;270(8):967–74.

  29. Fu X, Song A, Zhou Y, et al. Association of regional body fat with metabolic risks in Chinese women. Public Health Nutr. 2014;17(10):2316–24.

    Article  PubMed  Google Scholar 

  30. Harris PA, Taylor R, Thielke R, et al. Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377–81.

    Article  PubMed  Google Scholar 

  31. StataCorp. Stata Statistical Software. Release 15. College Station: StataCorp LLC; 2017.

    Google Scholar 

  32. Pekkarinen T, Mustajoki P. Use of very low-calorie diet in preoperative weight loss: efficacy and safety. Obes Res. 1997;5(6):595–602.

    Article  CAS  PubMed  Google Scholar 

  33. Zahouani A, Boulier A, Hespel JP. Short- and long-term evolution of body composition in 1389 obese outpatients following a very low calorie diet (Program18 VLCD). Acta Diabetol. 2003;40(Suppl 1):S149–50.

    Article  PubMed  Google Scholar 

  34. Glickman SG, Marn CS, Supiano MA, et al. Validity and reliability of dual-energy X-ray absorptiometry for the assessment of abdominal adiposity. J Appl Physiol (1985). 2004;97(2):509–14.

    Article  Google Scholar 

  35. Brownbill RA, Ilich JZ. Measuring body composition in overweight individuals by dual energy x-ray absorptiometry. BMC Med Imaging. 2005;5:1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Merra G, Gratteri S, De Lorenzo A, et al. Effects of very-low-calorie diet on body composition, metabolic state, and genes expression: a randomized double-blind placebo-controlled trial. Eur Rev Med Pharmacol Sci. 2017;21(2):329–45.

    CAS  PubMed  Google Scholar 

  37. Nielsen LV, Nielsen MS, Schmidt JB, et al. Efficacy of a liquid low-energy formula diet in achieving preoperative target weight loss before bariatric surgery. J Nutr Sci. 2016;5:e22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Chakravartty S, Vivian G, Mullholland N, Shaikh H, McGrath J, Sidhu PS, et al. Preoperative liver shrinking diet for bariatric surgery may impact wound healing: a randomized controlled trial. Surgery for obesity and related diseases : official journal of the American Society for Bariatric Surgery. 2019;15(1):117–25

    Article  PubMed  Google Scholar 

  39. Serafim MP, Santo MA, Gadducci AV, et al. Very low-calorie diet in candidates for bariatric surgery: change in body composition during rapid weight loss. Clinics (Sao Paulo). 2019;e560:74.

    Google Scholar 

  40. Chaston TB, Dixon JB, O’Brien PE. Changes in fat-free mass during significant weight loss: a systematic review. Int J Obes (2005. 2007;31(5):743–50.

    Article  CAS  Google Scholar 

  41. Coxon A, Kreitzman S, Brodie D, et al. Rapid weight loss and lean tissue: evidence for comparable body composition and metabolic rate in differing rates of weight loss. Int J Obes. 1989;13(Suppl 2):179–81.

    PubMed  Google Scholar 

  42. Kim TN, Choi KM. The implications of sarcopenia and sarcopenic obesity on cardiometabolic disease. J Cell Biochem. 2015;116(7):1171–8.

    Article  CAS  PubMed  Google Scholar 

  43. Leong DP, Teo KK, Rangarajan S, et al. Prognostic value of grip strength: findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet. 2015;386(9990):266–73.

    Article  PubMed  Google Scholar 

  44. Lopez-Jaramillo P, Cohen DD, Gomez-Arbelaez D, et al. Association of handgrip strength to cardiovascular mortality in pre-diabetic and diabetic patients: a subanalysis of the ORIGIN trial. Int J Cardiol. 2014;174(2):458–61.

    Article  PubMed  Google Scholar 

  45. Prado CM, Purcell SA, Alish C, et al. Implications of low muscle mass across the continuum of care: a narrative review. Ann Med. 2018;50(8):675–93.

    Article  PubMed  Google Scholar 

  46. Haywood CJ, Prendergast LA, Purcell K, et al. Very low calorie diets for weight loss in obese older adults-a randomized trial. J Gerontol A Biol Sci Med Sci. 2017;73(1):59–65.

    Article  PubMed  CAS  Google Scholar 

  47. Lazo M, Hernaez R, Eberhardt MS, et al. Prevalence of nonalcoholic fatty liver disease in the United States: the Third National Health and Nutrition Examination Survey, 1988-1994. Am J Epidemiol. 2013;178(1):38–45.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Foster GD, Wadden TA, Peterson FJ, et al. A controlled comparison of three very-low-calorie diets: effects on weight, body composition, and symptoms. Am J Clin Nutr. 1992;55(4):811–7.

    Article  CAS  PubMed  Google Scholar 

  49. Acheson KJ, Schutz Y, Bessard T, et al. Glycogen storage capacity and de novo lipogenesis during massive carbohydrate overfeeding in man. Am J Clin Nutr. 1988;48(2):240–7.

    Article  CAS  PubMed  Google Scholar 

  50. Heymsfield SB, Thomas D, Nguyen AM, et al. Voluntary weight loss: systematic review of early phase body composition changes. Obes Rev. 2011;12(5):e348–61.

    Article  CAS  PubMed  Google Scholar 

  51. Bone JL, Ross ML, Tomcik KA, et al. Manipulation of muscle creatine and glycogen changes dual X-ray absorptiometry estimates of body composition. Med Sci Sports Exerc. 2017;49(5):1029–35.

    Article  CAS  PubMed  Google Scholar 

  52. Gomez-Arbelaez D, Bellido D, Castro AI, et al. Body composition changes after very-low-calorie ketogenic diet in obesity evaluated by 3 standardized methods. J Clin Endocrinol Metab. 2017;102(2):488–98.

    Article  PubMed  Google Scholar 

  53. Pogozelski W, Arpaia N, Priore S. The metabolic effects of low-carbohydrate diets and incorporation into a biochemistry course. Biochem Mol Biol Educ. 2005;33(2):91–100.

    Article  CAS  PubMed  Google Scholar 

  54. Johnstone AM, Faber P, Gibney ER, et al. Measurement of body composition changes during weight loss in obese men using multi-frequency bioelectrical impedance analysis and multi-compartment models. Obes Res Clin Pract. 2014;8(1):e46–54.

    Article  PubMed  Google Scholar 

  55. Beavers KM, Nesbit BA, Kiel JR, et al. Effect of an energy-restricted, nutritionally complete, higher protein meal plan on body composition and mobility in older adults with obesity: a randomized controlled trial. J Gerontol A Biol Sci Med Sci. 2018;

  56. Verreijen AM, Verlaan S, Engberink MF, et al. A high whey protein-, leucine-, and vitamin D-enriched supplement preserves muscle mass during intentional weight loss in obese older adults: a double-blind randomized controlled trial. Am J Clin Nutr. 2015;101(2):279–86.

    Article  CAS  PubMed  Google Scholar 

  57. Backx EM, Tieland M, Borgonjen-van den Berg KJ, et al. Protein intake and lean body mass preservation during energy intake restriction in overweight older adults. Int J Obes (2005). 2016;40(2):299–304.

    Article  CAS  Google Scholar 

  58. Kim JE, O’Connor LE, Sands LP, et al. Effects of dietary protein intake on body composition changes after weight loss in older adults: a systematic review and meta-analysis. Nutr Rev. 2016;74(3):210–24.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wycherley TP, Moran LJ, Clifton PM, et al. Effects of energy-restricted high-protein, low-fat compared with standard-protein, low-fat diets: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2012;96(6):1281–98.

    Article  CAS  PubMed  Google Scholar 

  60. Love KM, Mehaffey JH, Safavian D, et al. Bariatric surgery insurance requirements independently predict surgery dropout. Surg Obes Relat Dis. 2017;13(5):871–6.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kuwada TS, Richardson S, El Chaar M, et al. Insurance-mandated medical programs before bariatric surgery: do good things come to those who wait? Surg Obes Relat Dis. 2011;7(4):526–30.

    Article  PubMed  Google Scholar 

  62. Ashtary-Larky D, Ghanavati M, Lamuchi-Deli N, et al. Rapid weight loss vs. slow weight loss: which is more effective on body composition and metabolic risk factors? Int J Endocrinol Metab. 2017;15(3):e13249.

    PubMed  PubMed Central  Google Scholar 

  63. Jo E, Worts PR, Elam ML, et al. Resistance training during a 12-week protein supplemented VLCD treatment enhances weight-loss outcomes in obese patients. Clin Nutr (Edinburgh, Scotland). 2019;38(1):372–82.

    Article  PubMed  Google Scholar 

  64. Park SW, Goodpaster BH, Lee JS, et al. Excessive loss of skeletal muscle mass in older adults with type 2 diabetes. Diabetes Care. 2009;32(11):1993–7.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lohman TG, Harris M, Teixeira PJ, et al. Assessing body composition and changes in body composition. Another look at dual-energy X-ray absorptiometry. Ann N Y Acad Sci. 2000;904:45–54.

    Article  CAS  PubMed  Google Scholar 

  66. Roubenoff R, Kehayias JJ, Dawson-Hughes B, et al. Use of dual-energy x-ray absorptiometry in body-composition studies: not yet a “gold standard”. Am J Clin Nutr. 1993;58(5):589–91.

    Article  CAS  PubMed  Google Scholar 

  67. Laskey MA. Dual-energy X-ray absorptiometry and body composition. Nutrition. 1996;12(1):45–51.

    Article  CAS  PubMed  Google Scholar 

  68. Buckinx F, Landi F, Cesari M, et al. Pitfalls in the measurement of muscle mass: a need for a reference standard. J Cachexia Sarcopenia Muscle. 2018;9(2):269–78.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Borga M, West J, Bell JD, et al. Advanced body composition assessment: from body mass index to body composition profiling. J Investig Med. 2018;66(5):1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Chomentowski P, Dube JJ, Amati F, et al. Moderate exercise attenuates the loss of skeletal muscle mass that occurs with intentional caloric restriction-induced weight loss in older, overweight to obese adults. J Gerontol A Biol Sci Med Sci. 2009;64(5):575–80.

    Article  PubMed  Google Scholar 

  71. Miller WC, Koceja DM, Hamilton EJ. A meta-analysis of the past 25 years of weight loss research using diet, exercise or diet plus exercise intervention. Int J Obes Relat Metab Disord. 1997;21(10):941–7.

    Article  CAS  PubMed  Google Scholar 

  72. Baillot A, Mampuya WM, Dionne IJ, et al. Impacts of supervised exercise training in addition to interdisciplinary lifestyle management in subjects awaiting bariatric surgery: a randomized controlled study. Obes Surg. 2016;26(11):2602–10.

    Article  PubMed  Google Scholar 

  73. Yolsuriyanwong K, Thanavachirasin K, Sasso K, et al. Effectiveness, compliance, and acceptability of preoperative weight loss with a liquid very low-calorie diet before bariatric surgery in real practice. Obes Surg. 2019;29(1):54–60.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Approval for the study was obtained from the St Vincent’s Human Research Ethics Committee in June 2017. This study was conducted according to the guidelines from the National Health and Medical Research Council. Informed written consent was obtained from each participant after discussing the objectives and nature of the study.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 1 Patient demographics
Table 2 Anthropometric measurements of 44 patients on a two-week pre- and post-VLCD
Table 3 Anthropometric measurements of 44 patients on a 2-week pre- and post-VLCD
Table 4 Pearson’s correlation analysis of associations between changes in body composition
Table 5 Association of weight and body composition changes with demographic variables

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivakumar, J., Chong, L., Ward, S. et al. Body Composition Changes Following a Very-Low-Calorie Pre-Operative Diet in Patients Undergoing Bariatric Surgery. OBES SURG 30, 119–126 (2020). https://doi.org/10.1007/s11695-019-04174-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-019-04174-y

Keywords

Navigation