Skip to main content

Advertisement

Log in

2-Deoxy-2-azidonucleoside analogs: synthesis and evaluation of antitumor and antimicrobial activity

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

A Correction to this article was published on 21 November 2017

This article has been updated

Abstract

A series of ten pyrimidine nucleosides modified in 2′ position with azide or amine group was tested for the antibacterial, antifungal and cytotoxic activity. The cytotoxic effect was determined on three cancer (CCRF-CEM, MCF7, HeLa) and one normal (HEK293) cell lines, while antibacterial activity was evaluated on five bacterial strains. Among others, 2′-azido-2′deoxycytidine and 2′-amino-2′-deoxycytidine exhibited the strongest antiproliferative activity at 200 μM concentration, decreasing the viability of CCRF-CEM cells to 33 ± 1 and 36 ± 2%, respectively. Newly synthesized 2′-amino-2′-deoxythymidine exhibited cytotoxic effect exclusively toward HeLa cancer cell line, but not toward the normal HEK293 cells. Also, investigated compounds did not exhibit any antibacterial or antifungal activity at a concentration of 40 mM. The obtained results suggest that the presence of cytosine base is desirable for the appearance of cytotoxic effect, while the structural variations of the sugar ring play a minor role. Future modification of 2′-amino-2′-deoxythymidine could be a promising way to obtain more active anticancer substances.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Scheme 2
Scheme 3
Fig. 2

Similar content being viewed by others

Change history

  • 21 November 2017

    The original version of this article unfortunately contained a mistake.

References

  • Akerblom L (1985) Azidocytidine is incorporated into RNA of 3T6 mouse fibroblasts. FEBS 193:203–207. https://doi.org/10.1016/0014-5793(85)80151-4

    Article  CAS  Google Scholar 

  • Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disc method. Am J Clin Pathol 36:493–496

    Article  Google Scholar 

  • Gold L, Pieken W, Tasset D, Janjic N, Kirschenheuter GP, Polisky B, Jayasena S, Biesecker, G, Smith D, Jenison RD (1995) PCT Int. Appl. WO 9507364 A1 1995.03.16

  • Bjursell G (1978) Effects of 2′-deoxy-2′-azidocytidine on polyoma virus DNA replication: evidence for rolling circle-type mechanism. J Virol 26:136–142

    CAS  Google Scholar 

  • Bjursell G, Skoog L, Thelander L, Soderman G (1977) 2′-Deoxy-2′-azidocytidine inhibits the initiation of polyoma DNA synthesis. Proc Natl Acad Sci USA 74:5310–5313

    Article  CAS  Google Scholar 

  • Bobek M, Cheng YC, Bloch A (1978) Novel arabinofuranosyl derivatives of cytosine resistant to enzymatic deamination and possessing potent antitumor activity. J Med Chem 21:597–598. https://doi.org/10.1021/jm00205a001

    Article  CAS  Google Scholar 

  • Cacciamani T, Vita A, Cristalli G, Vincenzetti S, Natalini P, Ruggieri S, Amici A, Magni G (1991) Purification of human cytidine deaminase: molecular and enzymatic characterization and inhibition by synthetic pyrimidine analogs. Arch Biochem Biophys 290:285–292. https://doi.org/10.1016/0003-9861(91)90543-R

    Article  CAS  Google Scholar 

  • Cheng YC, Derse D, Tan RS, Dutschman G, Bobek M, Schroeder A, Bloch A (1981) Biological and biochemical effects of 2′-azido-2′-deoxyarabinofuranosylcytosine on human tumor cells in vitro. Cancer Res 41:3144–3149

    CAS  Google Scholar 

  • De Clerck E, Balzarini J, Descamps J, Eckstein F (1980) Antiviral, antimetabolic and antineoplastic activities of 2′- or 3-amino or –azido-substituted deoxyribonucleosides. Biochem Pharmacol 29:1849–1851. https://doi.org/10.1016/0006-2952(80)90149-5

    Article  Google Scholar 

  • El Kouni MH, Naguib FNM, Panzica RP, Otter BA, Chu SH, Gosslin G, Chu CK, Schinazi RF, Shealy YF, Goudgaon N, Ozerov AA, Ueda T, Litzsch MH (1996) Effect of modifications in the pentose moiety and conformational changes on the binding of nucleoside ligands to uridine phosphorylase from Toxoplasma gondii. Biochem Pharmacol 51:1687–1700. https://doi.org/10.1016/0006-2952(96)00213-4

    Article  Google Scholar 

  • Eliasson R, Pontis E, Reichard P, Eckstein F (1981) Replication of polyoma DNA in nuclei isolated from azidocytidine-inhibited fibroblasts. J Biol Chem 256:9044–9050

    CAS  Google Scholar 

  • Gai XS, Fenlon EE, Brewer SH (2010) A sensitive multispectroscopic probe for nucleic acids. J Phys Chem B 114:7958–7966. https://doi.org/10.1021/jp101367s

    Article  CAS  Google Scholar 

  • Giacca M, Borella S, Calderazzo F, Ferraro P, Bianchi LC, Reichard P (1994) Inhibition of ribonucleotide reductase by 2′-substituted deoxycytidine analogues: possible application in AIDS treatment. Proc Natl Acad Sci USA 91:8403–8407

    Article  Google Scholar 

  • Giacca M, Borella S, Calderazzo F, Bianchi LC, D’Agaro P, Rampazzo C, Bianchi V, Reichard P (1996) Synergistic antiviral action of ribonucleotide reductase inhibitors and 3′-azido-3′-deoxythymidine on HIV type 1 infection in vitro. AIDS Res Human Retrovir 12:667–682. https://doi.org/10.1089/aid.1996.12.677

    Article  Google Scholar 

  • Hari Y, Akabane M, Hatanaka Y, Nakahara M, Obika S (2011) A 4-[(3R,4R)-dihydroxypyrrolidino]pyrimidin-2-one nucleobase for a CG base pair in triplex DNA. Chem Commun 47:4424–4426. https://doi.org/10.1039/C1CC10138B

    Article  CAS  Google Scholar 

  • Iwata K, Ayusawa D, Seno T (1979) Isolation of 2′-deoxy-2′-azidocytidine-resistant mutants deficient in deoxycytidine kinase in mouse FM3A cells. Cell Struct Funct 4:317–320. https://doi.org/10.1247/csf.4.317

    Article  CAS  Google Scholar 

  • Kierdaszuk B, Krawiec K, Kazimierczuk Z, Jacobsson U, Johansson NG, Munch-Petersen B, Eriksson S, Shugar D (1998) Substrate/inhibitor specificities of human deoxycytidine kinase (dCK) and thymidine kinases (TK1 and TK2). In: Griesmacher A et al (eds) Purine and pyrimidine metabolism in man IX. Plenum, New York, pp 623–627

    Chapter  Google Scholar 

  • Kierdaszuk B, Krawiec K, Kazimierczuk Z, Jacobsson U, Johansson NG, Munch-Petersen B, Eriksson S, Shugar D (1999) Substrate/inhibitor properties of human deoxycytidine kinase (dCK) and thymidine kinases (TK1 and TK2) towards the sugar moiety of nucleosides, including O′-alkyl analogues. Nucleos Nucleot Nucleic Acids 18:1883–1903. https://doi.org/10.1080/07328319908044850

    Article  CAS  Google Scholar 

  • Kirschenheuter GP, Zhai Y, Pieken WA (1994) An improved synthesis of 2′-azido-2′-deoxyuridine. Tetrahedron Lett 35:8517–8520. https://doi.org/10.1016/S0040-4039(00)78425-5

    Article  CAS  Google Scholar 

  • Kobayashi Y, Yamamoto K, Sai T, Nakano M, Kumadaki I (1980) Studies on organic fluorine compounds. Part 35. Trifluoromethylation of pyrimidine- and purine-nucleosides with trifluoromethyl-copper complex. J Chem Soc Perkin Trans 1:2755–2761. https://doi.org/10.1039/P19800002755

    Article  Google Scholar 

  • Kumaki Y, Day CW, Smee DF, Morrey JD, Barnard DL (2011) In vitro and in vivo efficacy of fluorodeoxycytidine analogs against highly pathogenic avian influenza H5N1, seasonal, and pandemic H1N1 virus infections. Antivir Res 92:329–340. https://doi.org/10.1016/j.antiviral.2011.09.001

    Article  CAS  Google Scholar 

  • Matsuda A, Yasuoka J, Sasaki T, Ueda T (1991) Nucleosides and nucleotides. 95. improved synthesis of 1-(2-azido-2-deoxy-β-d-arabinofuranosyl)cytosine (Cytarazid) and –thymine. inhibitory spectrum of Cytarazid on the growth of various human tumor cells in vitro. J Med Chem 34:999–1002. https://doi.org/10.1021/jm00107a018

    Article  CAS  Google Scholar 

  • McGuigan C, Pathirana RN, Snoeck R, Andrei G, De Clercq E, Balzarini J (2004) Discovery of a new family of inhibitors of human cytomegalovirus (HCMV) based upon lipophilic alkyl furano pyrimidine dideoxy nucleosides: action via a novel non-nucleosidic mechanism. J Med Chem 47:1847–1851. https://doi.org/10.1021/jm030857h

    Article  CAS  Google Scholar 

  • Mieczkowski A, Makowska M, Sekula J, Tomczyk E, Zalewska E, Nasulewicz-Goldeman A, Wietrzyk J (2015) Bicyclic cytarabine analogues: synthesis and investigation of antitumor properties of novel, 6-aryl and 6-alkyl-3H-pyrrolo[2,3-d]pyrimidin-2(7H)-one arabinosides. Tetrahedron 71:8454–8461. https://doi.org/10.1016/j.tet.2015.09.015

    Article  CAS  Google Scholar 

  • Mieczkowski A, Bazlekova M, Bagiński M, Wójcik J, Winczura A, Miazga A, Ghahe SS, Gajda R, Woźniak K, Tudek B (2016a) A mild and efficient approach to the 6H-oxazolo[3,2-f]pyrimidine-5,7-dione scaffold via unexpected rearrangement of 2,3-dihydropyrimido[6,1-b][1,5,3]dioxazepine-7,9(5H,8H)-diones: synthesis, crystallographic studies and cytotoxic activity screening. Tetrahedron Lett 57:743–746. https://doi.org/10.1016/j.tetlet.2016.01.006

    Article  CAS  Google Scholar 

  • Mieczkowski A, Tomczyk E, Makowska M, Nasulewicz-Goldeman A, Gajda R, Woźniak K, Wietrzyk J (2016b) Synthesis and investigation of antitumor properties of novel bicyclic furopyrimidine, pyrrolopyrimidine and pyrimidopyridazine nucleoside analogues. Synthesis 48:566–572. https://doi.org/10.1055/s-0035-1561277

    Article  CAS  Google Scholar 

  • Mitsuya H, Reinhold KJ, Furman PA, St Clair MH, Lehrman SN, Gallo RC, Bolognesi D, Barry DW, Broder S (1985) 3′-Azido-3′-deoxythymidine (BW A509U): an antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphadenopathy-associated virus in vitro. Proc Natl Acad Sci USA 82:7096–7100

    Article  CAS  Google Scholar 

  • Pathak P (2002) Azidonucleosides: synthesis, reactions, and biological properties. Chem Rev 102:1623–1667. https://doi.org/10.1021/cr0104532

    Article  CAS  Google Scholar 

  • Pokrovskii, AG, Il’icheva TN, Belanov EF, Volkov GN, Kukhanova MK, Aleksandrova LA (2005) Russ. RU 2264409 C2, 2005.11.20

  • Reichard P, Rowen L, Eiiassoh J, Hobbs J, Eckstein F (1978) Inhibition of primase, the dnaG protein of Escherichia coli by 2′-deoxy-2′-azidocytidine triphosphate. J Biol Chem 253:7011–7016

    CAS  Google Scholar 

  • Roy B, Verri A, Lossani A, Spadari S, Focher F, Aubertin AM, Gosselin G, Mathe C, Perigaud C (2004) Enantioselectivity of ribonucleotide reductase: a first study using stereoisomers of pyrimidine 2′-azido-2′-deoxynucleosides. Biochem Pharmacol 68:711–719. https://doi.org/10.1016/j.bcp.2004.05.002

    Article  CAS  Google Scholar 

  • Smith DB, Martin JA, Klumpp K, Baker SJ, Blomgren PA, Devos R, Granycome C, Hang J, Hobbs CJ, Jiang WR, Laxton C, Le Pogam S, Leveque V, Ma H, Maile G, Merret JH, Pichota A, Sarma K, Smith M, Swallow S, Symons J, Vesey D, Najera I, Cammack N (2007) Design, synthesis, and antiviral properties of 4′-substituted ribonucleosides as inhibitors of hepatitis C virus replication: the discovery of R1479. Bioorg Med Chem Lett 17:2570–2576. https://doi.org/10.1016/j.bmcl.2007.02.004

    Article  CAS  Google Scholar 

  • Torrence PF, Bobst AM, Waters JA, Witkop B (1973a) Synthesis and characterization of potential interferon inducers. Poly(2′-azido-2′-deoxyuridylic acid). Biochemistry 12:3962–3972. https://doi.org/10.1021/bi00744a028

    Article  CAS  Google Scholar 

  • Torrence PF, Waters JA, Buckler CE, Witkop B (1973b) Effect of pyrimidine and ribose modifications on the antiviral activity of synthetic polynucleotides. Biochem Biophys Res Commun 52:890–898. https://doi.org/10.1016/0006-291X(73)91021-8

    Article  CAS  Google Scholar 

  • Vickers MF, Zhang J, Visser F, Tackaberry T, Robins MJ, Nielsen LPC, Nowak I, Baldwin SA, Young JD, Cass CE (2004) Uridine recognition motifs of human equilibrative nucleoside transporters 1 and 2 produced in Saccharomyces cerevisiae. Nucleos Nucleot Nucleic Acids 23:361–373. https://doi.org/10.1081/NCN-120028333

    Article  CAS  Google Scholar 

  • Wanf J, Neuhard J, Eriksson S (1998) An Escherichia coli system expressing human deoxyribonucleoside salvage enzymes for evaluation of potential antiproliferative nucleoside analogs. Antimicrob Agents Chemother 42:2620–2625

    Google Scholar 

  • Wnuk SF, Chowdhury SM, Garcia PI Jr, Robins MJ (2002) Stereodefined synthesis of O3′-labeled uracil nucleosides, 3′-[17O]-2′-azido-2′-deoxyuridine 5′-diphosphate as a probe for the mechanism of inactivation of ribonucleotide reductase. J Org Chem 67:116–119. https://doi.org/10.1021/jo010899i

    Google Scholar 

  • Zhang J, Visser F, Vickers MF, Lang T, Robins MJ, Nielsen LPC, Nowak I, Baldwin SA, Young JD, Cass CE (2003) Uridine binding motifs of human concentrative nucleoside transporters 1 and 3 produced in Sacharomycetes cerevisiae. Mol Pharmacol 64:1512–1520. https://doi.org/10.1124/mol.64.6.1512

    Article  CAS  Google Scholar 

  • Zhang J, Smith KM, Tackaberry T, Visser F, Robins MJ, Nielsen LPC, Nowak I, Karpinski E, Baldwin SA, Young JD, Cass CE (2005) Uridine binding and transportability determinants of human concentrative nucleoside transporters. Mol Pharmacol 68:830–839. https://doi.org/10.1124/mol.105.012187

    CAS  Google Scholar 

Download references

Acknowledgements

The equipment used was sponsored in part by the Centre for Preclinical Research and Technology (CePT), a project co-sponsored by European Regional Development Fund and Innovative Economy, The National Cohesion Strategy of Poland. We thank Jacek Olędzki (IBB PAS) for recording ES-MS spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Mieczkowski.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s11696-017-0342-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mieczkowski, A., Wińska, P., Kaczmarek, M. et al. 2-Deoxy-2-azidonucleoside analogs: synthesis and evaluation of antitumor and antimicrobial activity. Chem. Pap. 72, 981–990 (2018). https://doi.org/10.1007/s11696-017-0339-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-017-0339-9

Keywords

Navigation