Skip to main content
Log in

Review of solvent based carbon-dioxide capture technologies

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Currently, a large proportion of global fossil fuel emissions originate from large point sources such as power generation or industrial processes. This trend is expected to continue until the year 2030 and beyond. Carbon capture and storage (CCS), a straightforward and effective carbon reduction approach, will play a significant role in reducing emissions from these sources into the future if atmospheric carbon dioxide (CO2) emissions are to be stabilized and global warming limited below a threshold of 2 °C. This review provides an update on the status of large scale integrated CCS technologies using solvent absorption for CO2 capture and provides an insight into the development of new solvents, including advanced amine solvents, amino acid salts, carbonate systems, aqueous ammonia, immiscible liquids and ionic liquids. These proposed new solvents aim to reduce the overall cost CO2 capture by improving the CO2 absorption rate, CO2 capture capacity, thereby reducing equipment size and decreasing the energy required for solvent regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Working Group III of the Intergovernmental Panel on Climate Change. IPCC Special Report on Carbon Dioxide Capture and Storage. 2005

  2. Carbon Visuals. CCS: A 2 Degree Solution. 2014

  3. Spasoff P. Saskpower selects carbon capture technology for Boundary Dam Project. 2010, http://www.gov.sk.ca/news?newsId=ffeaca54-7dda-41bc-989d-b0db37ad0dd3

    Google Scholar 

  4. Department of Mines and Petroleum, Australia. Fact Sheet: Century Plant. 2014

  5. Global CCS Institute. Coffeyville Gasification Plant. 2014, http://www.globalccsinstitute.com/project/coffeyville-gasification-plant

  6. Carbon Capture & Sequestration Technologies @ MIT. Enid Fertiliser Fact Sheet: Commercial EOR using Anthropogenic Carbon Dioxide. 2015, https://sequestration.mit.edu/tools/projects/enid_fertilizer.html

    Google Scholar 

  7. Global CCS Institute. Great Plains Synfuel Plant and Weyburn-Midale Project. 2014, http://www.globalccsinstitute.com/project/great-plains-synfuel-plant-and-weyburn-midale-project

    Google Scholar 

  8. Global CCS Institute. Lost Cabin Gas Plant. 2014, http://www.globalccsinstitute.com/project/lost-cabin-gas-plant

    Google Scholar 

  9. Global CCS Institute. Shute Creek Gas Processing Facility. 2014, http://www.globalccsinstitute.com/project/shute-creek-gas-processing-facility

    Google Scholar 

  10. Johannessen E. CO2 removal at Sleipner. 2012, http://www.cslforum.org/publications/documents/bergen2012/Johannessen-Sleipner-Workshop-Bergen0612.pdf

    Google Scholar 

  11. Global CCS Institute. Snohvit CO2 storage project. 2014, http://www.globalccsinstitute.com/project/sn%C3%B8hvit-co2-injection

    Google Scholar 

  12. Department of Mines and Petroleum, Australia. Fact Sheet: Val Verde Gas Plants. 2014

  13. Global CCS Institute. Alberta Carbon Trunk Line (“ACTL”) with Agrium CO2 Stream. 2014, http://www.globalccsinstitute.com/project/alberta-carbon-trunk-line-actl-agrium-co2-stream

    Google Scholar 

  14. Global CCS Institute. Alberta Carbon Trunk Line (“ACTL”) with North Sturgeon Refinery CO2 stream. 2014, http://www.globalccsinstitute.com/project/alberta-carbon-trunk-line-actl-north-weststurgeon-refinery-co2-stream

    Google Scholar 

  15. Chevron. Gorgon Project: Overview. 2014

    Google Scholar 

  16. Global CCS Institute. Kemper County Energy Facility (formerly Kemper County IGCC Project). 2014, http://www.globalccsinstitute.com/project/kemper-county-energy-facility

    Google Scholar 

  17. Shell. Quest Carbon Capture and Storage Project. Amendment to OSCA and EPEA Approvals for the Carbon Capture Infrastructure. 2010

    Google Scholar 

  18. Global CCS Institute. Uthmaniyah CO2 EOR Demonstration Project. 2014, http://www.globalccsinstitute.com/project/uthmaniyah-co2-eor-demonstration-project-0

    Google Scholar 

  19. Global CCS Institute. Projects: Saudi Aramco Shedgum Gas Plant. 2014, http://fluor.com/projects/pages/projectinfopage.aspx?PrjlD=171

    Google Scholar 

  20. Global CCS Institute. Abu Dhabi CCS Project (formerly Emirates Steel Industries (ESI) CCS Project). 2014, http://www.globalcc-sinstitute.com/project/esi-ccs-project

    Google Scholar 

  21. ZeroCO2. WA Parish CCS (Petra Nova Carbon Capture Project). 2014, http://www.zeroco2.no/projects/nrgs-ccs-demonstrationproject-at-wa-parish

    Google Scholar 

  22. National Energy Technology Laboratory, U.S. Department of Energy. DOE/NETL Advanced Carbon Dioxide Capture R&D Program: Technology Update. 2013

  23. Olajire A A. CO2 capture and separation technologies for end-ofpipe applications—A review. Energy, 2010, 35: 2610–2628

    CAS  Google Scholar 

  24. Owens W, Buchanan T, DeLallo M, Schoff R, White J. Evaluaton of innovative fossil fuel power plants with CO2 removal. 2000

    Google Scholar 

  25. Gainar I, Anitescu G. The solubility of CO2, N2 and H2 in a mixture of dimethylether polyethylene glycolds at high pressures. Fluid Phase Equilibria, 1995, 109(2): 281–289

    CAS  Google Scholar 

  26. ThyssenKrupp. Morphysorb/Genosorb Physical Solvents for Acid Gas Removal, T.I. Solutions. 2014

    Google Scholar 

  27. Bucklin R W, Schendel R L. Comparison of fluor solvent and Selexol processes. Energy Progress, 1984, 4(3): 137–142

    CAS  Google Scholar 

  28. Wang M, Lawal A, Stephenson P, Sidders J, Ramshaw C. Postcombustion CO2 capture with chemical absorption: A state-of-theart review. Chemical Engineering Research & Design, 2011, 89(9): 1609–1624

    CAS  Google Scholar 

  29. Abu-Zahra M R M, Abbas Z, Singh P, Feron P. Carbon Dioxide Post-Combustion Capture: Solvent Technologies Overview, Status and Future Directions. Materials and Processes for Energy: Communicating Current Research and Technological Developments. 2013

    Google Scholar 

  30. Huttenhuis P J G, Agrawal N J, Hogendoom J A, Versteeg G F. Gas solubility of H2S and CO2 in aqueous solutions of Nmethyldiethanolamine. Journal of Petroleum Science Engineering, 2007, 55: 122–134

    CAS  Google Scholar 

  31. Padurean A, Cormos C C, Agachi P S. Techno-economical evaluation of post-and pre-combustion carbon dioxide capture methods applied for an IGCC power generation plant. Environmental Engineering and Management Journal, 2013, 12(11): 2191–2201

    CAS  Google Scholar 

  32. Pennline H W, Luebke D R, Jones K L, Myers C R, Morsi B I, Heintz Y J, Ilconich J B. Progress in carbon dioxide capture and separation research for gasification-based power generation point sources. Fuel Processing Technology, 2008, 89(9): 897–907

    CAS  Google Scholar 

  33. Heintz Y J, Sehabiague L, Morsi B I, Jones K L, Pennline H W. Novel physical solvents for selective CO2 capture from fuel gas streams at elevated pressures and temperatures. Energy & Fuels, 2008, 22(6): 3824–3837

    CAS  Google Scholar 

  34. Miller A L, Carlisle T K, LaFrate A L, Voss B A, Bara J E, Hudiono Y C, Wiesenauer B R, Gin D L, Noble R D. Design of functionalized room-temperature ionic liquid-based materials for CO2 separations and selective blocking of hazardous chemical vapors. Separation Science and Technology, 2012, 47(2): 169–177

    CAS  Google Scholar 

  35. Finkenrath M. Carbon dioxide capture from power generation—Status of cost and performance. Chemical Engineering & Technology, 2012, 35(3): 482

    CAS  Google Scholar 

  36. Davison J. Performance and costs of power plants with capture and storage of CO2. Energy, 2007, 32(7): 1163–1176

    CAS  Google Scholar 

  37. SaskPower. Boundary Dam project is reaping benefits. 2015, http://www.yorktonnews.com/news/local-news/boundary-dam-projectis-reaping-benefits-1.1769601

    Google Scholar 

  38. Munson R. Boundary Dam first to power with CCS. 2014, http://decarboni.se/insights/boundary-dam-first-power-ccs

    Google Scholar 

  39. IEA Greenhouse Gas R&D Programme (IEA GHG). Evaluation of post-combustion CO2 capture solvent concepts, 2009

    Google Scholar 

  40. BusinessWire. World’s Largest Post-Combustion Carbon Capture-Enhanced Oil Recovery Project to be built by NRG Energy and JX Nippon Oil & Gas Exploration. Construction begins at WA Parish plant near Houston. 2014, http://www.businesswire.com/news/home/20140715005632/en/Worlds-Largest-Post-Combustion-Carbon-Capture-Enhanced-Oil-Recovery#.VPF5nyuUe_M

    Google Scholar 

  41. Reddy S, Scherffius J R, Yonkoski J, Radgen P, Rode H. Initial results from Fluor’s CO2 capture demonstration plant using econamine FG PlusSM technology at E.ON Kraftwerke’sWilhelmshaven Power Plant. Energy Procedia, 2013, 37: 6216–6225

    CAS  Google Scholar 

  42. Goto K, Yogo K, Higashii T. A review of efficiency penalty in a coal-fired power plant with post-combustion CO2 capture. Applied Energy, 2013, 111: 710–720

    CAS  Google Scholar 

  43. Knudsen J N, Jensen J N, Vilhelmsen P J, Biede O. Experience with CO2 capture from coal flue gas in pilot-scale: Testing of different amine solvents. Greenhouse Gas Control Technologies, 2009, 1(1): 783–790

    CAS  Google Scholar 

  44. Knudsen J N, Andersen J, Jensen J N, Biede O. Evaluation of process upgrades and novel solvents for the post combustion CO2 capture process in pilot-scale. Energy Procedia, 2011, 4: 1558–1565

    Google Scholar 

  45. Cousins A, Cottrell A, Lawson A, Huang S, Feron P H M. Model verification and evaluation of the rich-split process modification at an Australian-based post combustion CO2 capture pilot plant. Greenhouse Gases-Science and Technology, 2012, 2(5): 329–345

    CAS  Google Scholar 

  46. Artanto Y, Jansen J, Pearson P, Do T, Cottrell A, Meuleman E, Feron P. Performance of MEA and amine-blends in the CSIRO PCC pilot plant at Loy Yang Power in Australia. Fuel, 2012, 101: 264–275

    CAS  Google Scholar 

  47. Hart C, Liu H. Advancing carbon capture and sequestration in China: A global learning laboratory. China Environment Series Issue 11.WoodrowWilson International Center for Scholars, 2010, 11: 99–121

    Google Scholar 

  48. Wangyi Finance. The second carbon capture project operated by Huaneng begins to construct in Shanghai. 2009 (in Chinese)

    Google Scholar 

  49. CCUS in China. Petrochina’s CO2-EOR Research and Demonstration Project in the Jilin Oil Field. 2014, http://www.ccuschina.org.cn/English/News.aspx?NewsId=736

    Google Scholar 

  50. Conti F, Oettinger G, Prestigiacomo S, Ferrarese M, Mennitti D. ENEL: Inauguration of Italy’s first CCS pilot plant in Brindisi. 2011

    Google Scholar 

  51. Casero P, García-Peña F, Coca P. Elcogas pre-combustion carbon capture pilot. Real experience of commercial technology. Energy Procedia, 2013, 37: 6374–6382

    CAS  Google Scholar 

  52. Inatsune Y, Fukuda Y, Sugasawa M, Kimura H. Development of an environmentally conscious thermal power system. Hitachi Review, 2013, 62(1): 31–38

    Google Scholar 

  53. Liu K. Application of a Heat Integrated Post-Combustion CO2 Capture System. In: 2013 NETL CO2 Capture Technology Meeting, Pittsburgh, PA, 2013

    Google Scholar 

  54. Alstom. Charleston Carbon Capture Field Pilot. 2012

    Google Scholar 

  55. Idem R, Tontiwachwuthikul P, Gelowitz D, Wilson M. Latest research on fundamental studies of CO2 capture process technologies at the international test centre for CO2 capture. Energy Procedia, 2011, 4: 1707–1712

    Google Scholar 

  56. Thong D, Dave N, Feron P, Azzi M. Environmental Impacts of Amine-based CO2 Post Combustion Capture (PCC) Process. In: Activity 3: Process Modelling for Amine-based Post Combustion Capture Plant. Australia: CSIRO, 2012

    Google Scholar 

  57. RWE. Carbon dioxide capture and storage. 2014, https://www.rwe.com/web/cms/en/2756/rwe/innovation/projects-technologies/power-generation/fossil-fired-power-plants/co2-removal-uk/

    Google Scholar 

  58. Knudsen J N, Jensen J N, Vilhelmsen P J, Biede O. Experience with CO2 capture from coal flue gas in pilot-scale: Testing of different amine solvents. Greenhouse Gas Control Technologies, 2009, 1(1): 783–790

    CAS  Google Scholar 

  59. Ryu C K. Hadong and Boryeong 10 MW Pilot Projects. In: CSLF Technology Workshop in Seoul Korea, 2014

    Google Scholar 

  60. Endo T, Kajiya Y, Nagayasu H, Iijima M, Ohishi T, Tanaka H, Mitchell R. Current status of MHI CO2 capture plant technology, large scale demonstration project and road map to commercialization for coal fired flue gas application. Energy Procedia, 2011, 4: 1513–1519

    Google Scholar 

  61. Carbon Capture & Sequestration Technologies@MIT. Plant Barry Fact Sheet: Carbon Dioxide Capture and Storage Project. 2015, https://sequestration.mit.edu/tools/projects/plant_barry.html

    Google Scholar 

  62. Neill L. CATO CO2 catcher Pilot Plant Factsheet. 2008

    Google Scholar 

  63. CATO. Catching carbon to clear the skies. In: Experiences and Highlights of the Dutch R&D Programme on CCS2010. 2010

    Google Scholar 

  64. Tollefson J. Low-cost carbon-capture project sparks interest. Nature, 2011, 469(7330): 276–277

    CAS  Google Scholar 

  65. Department of Energy & Climate Change, UK. Carbon Capture Project Case Studies. 2013, https://www.gov.uk/government/casestudies/carbon-capture-project-case-studies

  66. Mangalapally H P, Notz R, Hoch S, Asprion N, Sieder G, Garcia H, Hasse H. Pilot plant experimental studies of post combustion CO2 capture by reactive absorption with MEA and new solvents. Energy Procedia, 2009, 1: 963–970

    CAS  Google Scholar 

  67. Mangalapally H P, Hasse H. GHGT-10: Pilot plant experiments for post combustion carbon dioxide capture by reactive absorption with novel solvents. Energy Procedia, 2011, 4: 1–8

    CAS  Google Scholar 

  68. Fluor, E. ON Kraftwerke Carbon Capture Technology Demonstation Plant. 2014, http://www.fluor.com/projects/Pages/ProjectInfo-Page.aspx?PrjID=227

    Google Scholar 

  69. Yu H, Morgan S, Allport A, Cottrell A, Do T, McGregor J, Wardhaugh L, Feron P. Results from trialling aqueous NH3 based post-combustion capture in a pilot plant at Munmorah power station: Absorption. Chemical Engineering Research & Design, 2011, 89(8A): 1204–1215

    CAS  Google Scholar 

  70. McLarnon C R, Duncan J L. Testing of ammonia based CO2 capture with multi-pollutant control technology. Greenhouse Gas Control Technologies, 2009, 1(1): 1027–1034

    CAS  Google Scholar 

  71. Alstom. We Energies Pleasant Prairie Field Pilot. 2008, http://www.alstom.com/china/products-and-services/we-energies/

    Google Scholar 

  72. AEP. Carbon Capture and Storage. 2014, https://www.aep.com/environment/climatechange/carboncapture.aspx

    Google Scholar 

  73. Alstom. E. ON Karlshamn Carbon Capture Field Pilot. 2014, http://www.alstom.com/china/products-and-services/Karlshamn/

    Google Scholar 

  74. Carbon Capture & Sequestration Technologies @ MIT. Statoil Mongstad Fact Sheet: Carbon Dioxide Capture and Storage Project. 2015, https://sequestration.mit.edu/tools/projects/statoil_mongstad.html

    Google Scholar 

  75. PennEnergy. Clean Coal: Carbon capture pilot begins at Polk IGCC plant. 2014, http://www.pennenergy.com/articles/pe/2014/04/clean-coal-carbon-capture-pilot-begins-at-polk-igcc-plant.html

    Google Scholar 

  76. Siemens. Post-Combustion Carbon Capture. 2014, http://www.energy.siemens.com/nl/en/fossil-power-generation/power-plants/carbon-capture-solutions/post-combustion-carbon-capture/#content=References

    Google Scholar 

  77. Southern Company Services, Inc. The National Carbon Capture Center at the Power Systems Development Facility. 2012

    Google Scholar 

  78. Reardon J, Advanced Low Energy Enzyme-Catalyzed Solvent for CO2 Capture. In: NETL National CO2 Capture Technology Meeting, 2013, Pittsburgh, PA, USA

  79. Seibert F, Chen E, Perry M, Briggs S, Montgomery R, Rochelle G. UT/SRP CO2 capture pilot plant-Operating experience and procedures. Energy Procedia, 2011, 4: 1616–1623

    Google Scholar 

  80. Mumford K A, Smith K H, Anderson C J, Shen S F, Tao W D, Suryaputradinata Y A, Qader A, Hooper B, Innocenzi R A, Kentish S E, Stevens G W. Post-combustion capture of CO2: Results from the solvent absorption capture plant at hazelwood power station using potassium carbonate solvent. Energy & Fuels, 2012, 26(1): 138–146

    CAS  Google Scholar 

  81. Smith K H, Anderson C J, Tao W, Endo K, Mumford K A, Kentish S E, Qader A, Hooper B, Stevens G W. Pre-combustion capture of CO2-Results from solvent absorption pilot plant trials using 30wt% potassium carbonate and boric acid promoted potassium carbonate solvent. International Journal of Greenhouse Gas Control, 2012, 10(6): 64–73

    CAS  Google Scholar 

  82. NETL. Carbon Absorber Retrofit Equipment (CARE). 2014, http://www.netl.doe.gov/research/proj?k=FE0007528

    Google Scholar 

  83. Damen K, Faber R, Gnutek R, van Dijk H, Trapp C, Valenz L. Performance and modelling of the pre-combustion capture pilot plant at the Buggenum IGCC. Energy Procedia, 2013

    Google Scholar 

  84. Feron P, Hooper B. Research Opportunies in Post Combustion CO2 Capture. Australia: CSIRO, 2009

    Google Scholar 

  85. Kothandaraman A. Carbon Dioxide Capture by Chemical Absorption: A Solvent Comparison Study. USA: Massachusetts Institute of Technology, 2010

    Google Scholar 

  86. Rochelle G, Chen E, Freeman S, Van Wagener D, Xu Q, Voice A. Aqueous piperazine as the new standard for CO2 capture technology. Chemical Engineering Journal, 2011, 171(3): 725–733

    CAS  Google Scholar 

  87. Freeman S A, Dugas R, van Wagener D H, Nguyen T, Rochelle G T. Carbon dioxide capture with concentrated, aqueous piperazine. International Journal of Greenhouse Gas Control, 2010, 4(2): 119–124

    CAS  Google Scholar 

  88. Rameshni M. Carbon Capture Overview. Australia: WorleyParsons, 2010

    Google Scholar 

  89. Cheng-Hsiu Y, Chih-Hung H, Chung-Sung T. A review of CO2 capture by absorption and adsorption. Aerosol and Air Quality Research, 2012, (5): 745

    Google Scholar 

  90. Herzog H. An Introduction to CO2 Separation and Capture Technologies. Cambridge, MA: MIT Energy Laboratory, 1999

    Google Scholar 

  91. Lecomte F, Broutin P, Lebas E. CO2 Capture: Technologies to Reduce Greenhouse Gas Emissions. Portland, OR, USA: Book News, Inc., 2010

    Google Scholar 

  92. Singh P. Incorporating Future Technological Improvements in Existing CO2 Post Combustion Capture Plants: Technical Review. Cheltenham, UK: IEAGHG, 2013

    Google Scholar 

  93. Veawab A, Aroonwilas A, Chakma A, Tontiwachwuthikul P. Solvent Formulation for CO2 Separation from Flue Gas Streams. Regina: University of Regina, 2001

    Google Scholar 

  94. Veawab A, Aroonwilas A, Tontiwachwuthikul P. CO2 absorption performance of aqueousalkanolamines in packed columns. Fuel Chemistry Division Preprints, 2002, 47(1), 49–50

    CAS  Google Scholar 

  95. Idem R, Gelowitz D, Tontiwachwuthikul P. Evaluation of the performance of various amine based solvents in an optimized multipurpose technology development pilot plant. Energy Procedia, 2009, 1: 1543–1548

    CAS  Google Scholar 

  96. Jovanovic S. Hill M. Slipstream pilot scale demonstration of a novel amine-based post-combustion technology for carbon dioxide captrue from coal-fired power plant flue gas in Techno-Economic Analysis of 550 MWe subcritical PC power plant with CO2 capture. USA: DOE, 2012

    Google Scholar 

  97. Closmann F, Nguyen T, Rochelle G T. MDEA/Piperazine as a solvent for CO2 capture. Energy Procedia, 2009, 1: 1351–1357

    CAS  Google Scholar 

  98. Bishnoi S, Rochelle G T. Absorption of carbon dioxide into aqueous piperazine: reaction kinetics, mass transfer and solubility. Chemical Engineering Science, 2000, 55(22): 5531–5543

    CAS  Google Scholar 

  99. Os P V. CO2 Enhanced Separation and Recovery. Nethelands: TNO, 2011

    Google Scholar 

  100. Singh A, Stéphenne K. Shell Cansolv CO2 capture technology: Achievement from first commercial plant. Energy Procedia, 2014, 63: 1678–1685

    CAS  Google Scholar 

  101. Herzog H, Meldon J, Hatton A. Advanced Post-Combustion CO2 Capture. Boston, MA, USA: Clean Air Task Force, 2009

    Google Scholar 

  102. Brouwer J P, Feron P H M, Asbroek N A M. Amino acid salts for CO2 capture from flue gases. In: Proceedings of the 4th Annual Conference on Carbon Capture and Sequestration, Alexandria, VA, USA, 2005

    Google Scholar 

  103. Liu A H, Ma R, Song C, Yang Z Z, Yu A, Cai Y, He L N, Zhao Y N, Yu B, Song Q W. Equimolar CO2 capture by N-substituted amino acid salts and subsequent conversion. Angewandte Chemie International Edition, 2012, 51(45): 11306–11310

    CAS  Google Scholar 

  104. Sanchez-Fernandez E. Mercader FdM, Misiak K, van der Ham L, Linders M, Goetheer E. New process concepts for CO2 capture based on precipitating amino acids. Energy Procedia, 2013, 37: 1160–1171

    CAS  Google Scholar 

  105. Puxty G, Rowland R, Attalla M. Comparison of the rate of CO2 absorption into aqueous ammonia and monoethanolamine. Chemical Engineering Science, 2010, 65(2): 915–922

    CAS  Google Scholar 

  106. Anderson C, Harkin T, Ho M, Mumford K, Qader A, Stevens G, Hooper B. Developments in the CO2 CRC UNO MK 3 process: A multi-component solvent process for large scale CO2 capture. Energy Procedia, 2013, 37: 225

    CAS  Google Scholar 

  107. Taylor C E. An Overview of Carbon Capture Regulations and Technologies. In: 2011 ICAC Meeting, Mobile, AL, USA, 2011

    Google Scholar 

  108. Smith K, Ghosh U, Khan A, Simioni M, Endo K, Zhao X, Kentish S, Qader A, Hooper B, Stevens G. Recent developments in solvent absorption technologies at the CO2 CRC in Australia. Energy Procedia, 2009, 1(1): 1549

    CAS  Google Scholar 

  109. Thee H, Nicholas N J, Smith K H, da Silva G, Kentish S E, Stevens G W. A kinetic study of CO2 capture with potassium carbonate solutions promoted with various amino acids: Glycine, sarcosine and proline. International Journal of Greenhouse Gas Control, 2014, 20: 212–222

    CAS  Google Scholar 

  110. Cullinane J T, Rochelle G T. Carbon dioxide absorption with aqueous potassium carbonate promoted by piperazine. Chemical Engineering Science, 2004, 59(17): 3619–3630

    CAS  Google Scholar 

  111. Thee H, Suryaputradinata Y A, Mumford K A, Smith K H, da Silva G, Kentish S E, Stevens G W. A kinetic and process modeling study of CO2 capture with MEA-promoted potassium carbonate solutions. Chemical Engineering Journal, 2012, 210: 271–279

    CAS  Google Scholar 

  112. Thee H, Smith K H, da Silva G, Kentish S E, Stevens G W. Carbonic anhydrase promoted absorption of CO2 into potassium carbonate solutions. Greenhouse Gases: Science and Technology, 2015, 5(1): 108–114

    CAS  Google Scholar 

  113. Thee H, Smith K H, da Silva G, Kentish S E, Stevens GW. Carbon dioxide absorption into unpromoted and borate-catalyzed potassium carbonate solutions. Chemical Engineering Journal, 2012, 181–182: 694–701

    Google Scholar 

  114. Smith K, Xiao G, Mumford K, Gouw J, Indrawan I, Thanumurthy N, Quyn D, Cuthbertson R, Rayer A, Nicholas N, Lee A, da Silva G, Kentish S, Harkin T, Qader A, Anderson C, Hooper B, Stevens G. Demonstration of a concentrated potassium carbonate process for CO2 capture. Energy and Fuels, 2013, 28(1): 299–306

    Google Scholar 

  115. Anderson C, Hooper B, Qader A, Harkin T, Smith K, Mumford K, Pandit J, Ho M, Lee A, Nicholas N, Indrawan, Gouw J, Xiao J, Thanumurthy N, Temple N, Stevens G, Wiley D. Recent developments in the UNO MK 3 Process—A low cost, environmentally benign precipitating process for CO2 capture. Energy Procedia, 2014, 63: 1773–1780

    CAS  Google Scholar 

  116. Illinois State Geological Survey, Bench-Scale Development of a Hot Carbonate Absorption Process with Crystallization-Enabled High Pressure Stripping for Post Pressure Stripping for Post-Combustion CO2 Capture. In: Project Review Meeting, Pittsburgh, PA, USA, 2013

  117. Mumford K A, Pas S J, Linseisen T, Statham T M, Johann Nicholas N, Lee A, Kezia K, Vijayraghavan R, MacFarlane D R, Stevens G W. Evaluation of the protic ionic liquid, N,N-dimethylaminoethylammonium formate for CO2 capture. International Journal of Greenhouse Gas Control, 2015, 32: 129–134

    CAS  Google Scholar 

  118. Maginm E J. Ionic Liquids: Breakthrough Absorption Technology for Post-Combustion CO2 Capture. USA: University of Notre Dame, 2013

    Google Scholar 

  119. Vega F, Sanna A, Navarrete B, Maroto-Valer M M, Cortes V. Degradation of amine-based solvents in CO2 capture process by chemical absorption. Greenhouse Gases-Science and Technology, 2014, 4(6): 707–733

    CAS  Google Scholar 

  120. Dumee L, Scholes C, Stevens G, Kentish S. Purification of aqueous amine solvents used in post combustion CO2 capture: A review. International Journal of Greenhouse Gas Control, 2012, 10: 443–455

    CAS  Google Scholar 

  121. Reynolds A J, Verheyen T V, Adeloju S B, Meuleman E, Feron P. Towards commercial scale postcombustion capture of CO2 with monoethanolamine solvent: Key considerations for solvent management and environmental impacts. Environmental Science & Technology, 2012, 46(7): 3643–3654

    CAS  Google Scholar 

  122. Yan S P, He Q Y, Zhao S F, Zhai H, Cao M H, Ai P. CO2 removal from biogas by using green amino acid salts: Performance evaluation. Fuel Processing Technology, 2015, 129: 203–212

    CAS  Google Scholar 

  123. Sodiq A, Rayer A V, Olanrewaju A A, Abu Zahra M R M. Reaction kinetics of carbon dioxide (CO2) absorption in sodium salts of taurine and proline using a stopped-flow technique. International Journal of Chemical Kinetics, 2014, 46(12): 730–745

    CAS  Google Scholar 

  124. Rabensteiner M, Kinger G, Koller M, Gronald G, Unterberger S, Hochenauer C. Investigation of the suitability of aqueous sodium glycinate as a solvent for post combustion carbon dioxide capture on the basis of pilot plant studies and screening methods. International Journal of Greenhouse Gas Control, 2014, 29: 1–15

    CAS  Google Scholar 

  125. Wei C C, Puxty G, Feron P. Amino acid salts for CO2 capture at flue gas temperatures. Chemical Engineering Science, 2014, 107: 218–226

    CAS  Google Scholar 

  126. Grant T, Anderson C, Hooper B. Comparative life cycle assessment of potassium carbonate and monoethanolamine solvents for CO2 capture from post combustion flue gases. International Journal of Greenhouse Gas Control, 2014, 28: 35–44

    CAS  Google Scholar 

  127. Yang N, Yu H, Li L C, Xu D Y, Han W F, Feron P. Aqueous ammonia (NH3) based post combustion CO2 capture: A review. Oil & Gas Science and Technology-Revue Energies Nouvelles, 2014, 69(5): 931–945

    Google Scholar 

  128. Ahn C K, Han K, Lee M S, Kim J Y, Chun H D, Kim Y, Park J M. Experimental studies of additivies for suppression of ammonia vaporization in the ammonia based CO2 capture process. Energy Procedia, 2013, 37: 7108–7116

    CAS  Google Scholar 

  129. Salentinig S, Jackson P, Attalla M. Strategic vapor suppressing additives for ammonia based CO2 capture solvent. Energy Procedia, 2013, 37: 241–246

    CAS  Google Scholar 

  130. Yu H, Xiang Q Y, Fang M X, Yang Q, Feron P. Promoted CO2 absorption in aqueous ammonia. Greenhouse Gases-Science and Technology, 2012, 2(3): 200–208

    CAS  Google Scholar 

  131. Zhuang Q, Clements B, Li Y. From ammonium bicarbonate fertilizer production process to power plant CO2 capture. International Journal of Greenhouse Gas Control, 2012, 10: 56–63

    CAS  Google Scholar 

  132. Kumar S, Cho J H, Moon I. Ionic liquid-amine blends and CO2BOLs: Prospective solvents for natural gas sweetening and CO2 capture technology-A review. International Journal of Greenhouse Gas Control, 2014, 20: 87–116

    CAS  Google Scholar 

  133. Chen Y, Cao Y Y, Sun X F, Yan C Y, Mu T C. New criteria combined of efficiency, greenness, and economy for screening ionic liquids for CO2 capture. International Journal of Greenhouse Gas Control, 2013, 16: 13–20

    Google Scholar 

  134. Yang Z Z, Zhao Y N, He L N. CO2 chemistry: Task-specific ionic liquids for CO2 capture/activation and subsequent conversion. RSC Advances, 2011, 1(4): 545–567

    CAS  Google Scholar 

  135. Yong J K J, Stevens G W, Caruso F, Kentish S E. The use of carbonic anhydrase to accelerate carbon dioxide capture processes. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2015, 90(1): 3–10

    CAS  Google Scholar 

  136. NETL. The Energy lab PROJECT FACTS: Post-Combustion CO2 Capture for Existing PC Boilers by Self-Concentrating Amine Absorbent. 2011

    Google Scholar 

  137. Global CCS Institute. The Global Status of CCS. 2014

  138. National Energy Technology Laboratory. Carbon Capture: Technology program plan. 2013

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey W. Stevens.

Additional information

Professor Geoff W. Stevens is a Laureate Professor in the Department of Chemical and Biomolecular Engineering at The University of Melbourne and is one of Australia’s leading Engineers. He has published over 380 peer reviewed publications and is recognized internationally for his work in separations technology and the development of novel hydrometallurgical processes and equipment. Geoff is also Director of the Peter Cook Centre for Carbon Capture and Storage Research at the University of Melbourne and a Project Leader in the CRC for Greenhouse Gas Technologies where he runs the Solvent Systems Program.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mumford, K.A., Wu, Y., Smith, K.H. et al. Review of solvent based carbon-dioxide capture technologies. Front. Chem. Sci. Eng. 9, 125–141 (2015). https://doi.org/10.1007/s11705-015-1514-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-015-1514-6

Keywords

Navigation