Skip to main content
Log in

Precipitation study of CO2-loaded glycinate solution with the introduction of ethanol as an antisolvent

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Focused beam reflectance measurement (FBRM) and 13C nuclear magnetic resonance (13C NMR) analysis were used to study the precipitation process of CO2-loaded potassium glycinate (KGLY) solutions at different CO2 loadings, during the addition of ethanol as an antisolvent at a rate of 10 mL·min−1. The volume ratio of ethanol added to the KGLY solution (3.0 mol·L−1, 340 mL) ranged from 0 to 3.0. Three solid-liquid-liquid phases were formed during the precipitation process. The FBRM results showed that the number of particles formed increased with CO2 loading and ethanol addition for CO2-unsaturated KGLY solutions, whilst for CO2-saturated KGLY solution it first increased then decreased to a stable value with ethanol addition. 13C NMR spectroscopic analysis showed that the crystals precipitated from the CO2-unsaturated KGLY solutions consisted of glycine only, and the quantity crystallised increased with CO2 loading and ethanol addition. However, a complex mixture containing glycine, carbamate and potassium bicarbonate was precipitated from CO2-saturated KGLY solution with the maximum precipitation percentages of 94.3%, 31.4% and 89.6%, respectively, at the ethanol volume fractions of 1.6, 2.5 and 2.3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yang H, Xu Z, Fan M, Gupta R, Slimane R B, Bland A E, Wright I. Progress in carbon dioxide separation and capture: A review. Acta Scientiae Circumstantiae, 2008, 20(1): 14–27

    CAS  Google Scholar 

  2. Davison J, Thambimuthu K. An overview of technologies and costs of carbon dioxide capture in power generation. Proceedings of the Institution of Mechanical Engineers. Part A, Journal of Power and Energy, 2009, 223(3): 201–212

    Article  Google Scholar 

  3. Jou F Y, Mather A E, Otto F D. The solubility of CO2 in a 30 mass% monoethanolamine solution. Canadian Journal of Chemical Engineering, 1995, 73(1): 140–147

    Article  CAS  Google Scholar 

  4. Hook R J. An investigation of some sterically hindered amines as potential carbon dioxide scrubbing compounds. Industrial & Engineering Chemistry Research, 1997, 36(5): 1779–1790

    Article  CAS  Google Scholar 

  5. Penny D E, Ritter T J. Kinetic study of the reaction between carbon dioxide and primary amines. Journal of the Chemical Society, Faraday Transactions, 1983, 9(9): 2103–2109

    Article  Google Scholar 

  6. Rochelle G T. New amines for CO2 capture. II. Oxidative degradation mechanisms. Current Opinion in Chemical Engineering, 2012, 1(2): 183–190

    Article  CAS  Google Scholar 

  7. Park D W, Son Y S, Park D W, Oh K J. Absorption of carbon dioxide into aqueous solution of sodium glycinate. Separation Science and Technology, 2008, 43(11–12): 3003–3019

    Article  CAS  Google Scholar 

  8. Kumar P S, Hogendoorn J A, Versteeg G F, Feron P H M. Kinetics of the reaction of CO2 with aqueous potassium salt of taurine and glycine. AIChE Journal. American Institute of Chemical Engineers, 2010, 49(1): 203–213

    Article  Google Scholar 

  9. Hu G, Smith K H, Liu L, Kentish S E, Stevens G W. Reaction kinetics and mechanism between histidine and carbon dioxide. Chemical Engineering Journal, 2017, 307(1): 56–62

    Article  CAS  Google Scholar 

  10. Holst J V, Versteeg G F, Brilman D W F, Hogendoorn J A. Kinetic study of CO2 with various amino acid salts in aqueous solution. Chemical Engineering Science, 2009, 64(1): 59–68

    Article  Google Scholar 

  11. Kumar P, Hogendoorn J, Versteeg G, Feron P. Kinetics of the reaction of CO2 with aqueous potassium salt of taurine and glycine. AIChE Journal. American Institute of Chemical Engineers, 2003, 49(1): 203–213

    Article  CAS  Google Scholar 

  12. Portugal A F, Sousa J M, Magalhães F D, Mendes A. Solubility of carbon dioxide in aqueous solutions of amino acid salts. Chemical Engineering Science, 2009, 64(9): 1993–2002

    Article  CAS  Google Scholar 

  13. Hallenbeck A P, Egbebi A, Resnik K P, Hopkinson D, Anna S L, Kitchin J R. Comparative microfluidic screening of amino acid salt solutions for post-combustion CO2 capture. International Journal of Greenhouse Gas Control, 2015, 43: 189–197

    Article  CAS  Google Scholar 

  14. Lim J A, Kim D H, Yoon Y, Jeong S K, Park K T, Nam S C. Absorption of CO2 into aqueous potassium salt solutions of l-alanine and l-proline. Energy & Fuels, 2012, 26(6): 3910–3918

    Article  CAS  Google Scholar 

  15. Majchrowicz M E, Brilman D W F. Solubility of CO2 in aqueous potassium l-prolinate solutions-absorber conditions. Chemical Engineering Science, 2012, 72: 35–44

    Article  CAS  Google Scholar 

  16. Thee H, Nicholas N J, Smith K H, Da Silva G, Kentish S E, Stevens G W. A kinetic study of CO2 capture with potassium carbonate solutions promoted with various amino acids: Glycine, sarcosine and proline. International Journal of Greenhouse Gas Control, 2014, 20(Suppl C): 212–222

    Article  CAS  Google Scholar 

  17. Fernandez E S, Heffernan K, Ham L V V D, Linders M J G, Eggink E, Schrama F N H, Brilman D W F, Goetheer E L V, Vlugt T J H. Conceptual design of a novel CO2 capture process based on precipitating amino acid solvents. Industrial & Engineering Chemistry Research, 2013, 52(34): 12223–12235

    Article  Google Scholar 

  18. Perry R J, Wood B R, Genovese S, O’Brien M J, Westendorf T, Meketa M L, Farnum R, Mcdermott J, Sultanova I, Perry T M, et al. CO2 capture using phase-changing sorbents. Energy & Fuels, 2012, 26(4): 2528–2538

    Article  CAS  Google Scholar 

  19. Seo S, Simoni L D, Ma M, Desilva M A, Huang Y, Stadtherr M A, Brennecke J F. Phase-change ionic liquids for postcombustion CO2 capture. Energy & Fuels, 2014, 28(9): 5968–5977

    Article  CAS  Google Scholar 

  20. Wang L D, An S L, Li Q W, Yu S H, Wu S Y. Phase change behavior and kinetics of CO2 absorption into DMBA/DEEA solution in a wetted-wall column. Chemical Engineering Journal, 2017, 314: 681–687

    Article  CAS  Google Scholar 

  21. Kumar P S, Hogendoorn J A, Feron P H M, Versteeg G F. Equilibrium solubility of CO2 in aqueous potassium taurate solutions: Part 1. Crystallization in carbon dioxide loaded aqueous salt solutions of amino acids. Industrial & Engineering Chemistry Research, 2003, 42(12): 2832–2840

    Article  CAS  Google Scholar 

  22. Fernandez E S, Goetheer E L V. DECAB: Process development of a phase change absorption process. Energy Procedia, 2011, 4(1): 868–875

    Article  CAS  Google Scholar 

  23. Aronu U E, Ciftja A F, Kim I, Hartono A. Understanding precipitation in amino acid salt systems at process conditions. Energy Procedia, 2013, 37: 233–240

    Article  CAS  Google Scholar 

  24. Bian Y Y, Shen S F. CO2 absorption into a phase change absorbent: Water-lean potassium prolinate/ethanol solution. Chinese Journal of Chemical Engineering, 2018, 26(11): 2318–2326

    Article  CAS  Google Scholar 

  25. Holmes P E, Naaz M, Poling B E. Ion Concentrations in the CO2-NH3-H2O system from 13C NMR spectroscopy. Industrial & Engineering Chemistry Research, 1998, 37(8): 3281–3287

    Article  CAS  Google Scholar 

  26. Shi H C, Naami A, Idem R, Sema T, Liang Z W, Usubharatana P, Saiwan C, Tontiwachwuthikul P. NMR analysis of amine-CO2-H2O systems with VLE modeling for CO2 capture processes. Future Medicinal Chemistry, 2013, 10: 10–31

    Google Scholar 

  27. Shi H, Sema T, Naami A, Liang Z, Idem R, Tontiwachwuthikul P. 13C NMR spectroscopy of a novel amine species in the DEAB—CO2-H2O system: VLE model. Industrial & Engineering Chemistry Research, 2012, 51(25): 8608–8615

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the infrastructure support from the Particulate Fluids Processing Centre (PFPC), the Peter Cook Centre (PCC) for Carbon Capture and Storage (CCS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenshou Sun or Kathryn A. Mumford.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Wu, Y., Stevens, G.W. et al. Precipitation study of CO2-loaded glycinate solution with the introduction of ethanol as an antisolvent. Front. Chem. Sci. Eng. 14, 415–424 (2020). https://doi.org/10.1007/s11705-019-1882-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-019-1882-4

Keywords

Navigation