Skip to main content
Log in

A putative 2OG-Fe(II) oxygenase’s response to gibberellin deficiency is related to the internodal growth of columnar apples

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Columnar apples are a labor saving and productive tree form that has long been of interest to apple breeders and producers. MdCo31, which encodes a putative 2OG-Fe(II) oxygenase, is a potential candidate gene involved in controlling the internode length of columnar growth of apple. In this study, a putative regulation in internode length was conducted by exogenous application of GA3 and paclobutrazol. The results showed that the MdCo31-GFP fusion protein was specifically localized in the cytoplasm. Heterologous over-expression of MdCo31 in tobacco produced stunted phenotypes with high chlorophyll content in leaves, and delayed the timing of seed germination and flowering. The over-expression tobacco plants were more sensitive to exogenous application of GA3 but insensitive to paclobutrazol, and their growth correlated to lower concentrations of endogenous GA1 and lower expression levels of the gibberellin-regulated family gene NtGASA6. The higher the MdCo31 expression levels were identified in more dwarf transformants with the shorter internodes. This research proposed that the decrease in endogenous GA1, resulting from high MdCo31 expression, induced dwarf phenotypes and shorted internodes, which indicated that MdCo31 is responded to gibberellins’ deficiency conferring the internodal growth of columnar apples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Asif M, Trivedi P, Solomos T, Tucker M (2006) Isolation of high-quality RNA from apple (Malus domestica) fruit. J Agric Food Chem 54:5227–5229

    Article  CAS  PubMed  Google Scholar 

  • Bai T, Zhu Y, Fernández-Fernández F, Keulemans J, Brown S, Xu K (2012) Fine genetic mapping of the Co locus controlling columnar growth habit in apple. Mol Genet Genomic 287:437–450

    Article  CAS  Google Scholar 

  • Baldi P, Wolters PJ, Komjanc M, Viola R, Velasco R, Salvi S (2013) Genetic and physical characterisation of the locus controlling columnar habit in apple (Malus ×domestica Borkh.). Mol Breeding 31:429–440

    Article  CAS  Google Scholar 

  • Cerovic Z, Cartelat A, Goulas Y, Meyer S (2005) In-the-field assessment of wheat-leaf polyphenolics using the new optical leaf-clip Dualex. Precis Agric 5:243–250

    Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Fang L et al (2012) Rolling-leaf14 is a 2OG-Fe (II) oxygenase family protein that modulates rice leaf rolling by affecting secondary cell wall formation in leaves. Plant Biotechnol J 10:524–532

    Article  CAS  PubMed  Google Scholar 

  • Feng T (2014) Characterisation of 2-oxoglutarate-and fe (II)-dependent oxygenases targeting the protein synthesis apparatus. Dissertation, University of Oxford

  • Fernandez MGS, Becraft PW, Yin Y, Lübberstedt T (2009) From dwarves to giants? Plant height manipulation for biomass yield. Trends Plant Sci 14:454–461

    Article  CAS  Google Scholar 

  • Gambino G, Perrone I, Gribaudo I (2008) A Rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochem Anal PCA 19:520–525

    Article  CAS  PubMed  Google Scholar 

  • Giacomelli L et al (2013) Gibberellin metabolism in Vitis vinifera L. during bloom and fruit-set: functional characterization and evolution of grapevine gibberellin oxidases. J Exp Bot 64:4403–4419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Z (1993) Enzyme linked immunosorbent assay for endogenous plant hormones. In: He Z (ed) Guidance to experiment on chemical control in crop plants. Agricultural University Publishers, Beijing, China, pp 60–68 (in Chinese)

    Google Scholar 

  • Heberle-Bors E (1983) Induction of embryogenic pollen grains in situ and subsequent in vitro pollen embryogenesis in Nicotiana tabacum by treatments of the pollen donor plants with feminizing agents. Physiol Plant 59:67–72

    Article  CAS  Google Scholar 

  • Hedden P (2003) Constructing dwarf rice. Nat Biotechnol 21:873

    Article  CAS  PubMed  Google Scholar 

  • Hedden P, Graebe JE (1985) Inhibition of gibberellin biosynthesis by paclobutrazol in cell-free homogenates of Cucurbita maxima endosperm and Malus pumila embryos. J Plant Growth Regul 4:111

    Article  CAS  Google Scholar 

  • Herzog M, Dorne AM, Grellet F (1995) GASA, a gibberellin-regulated gene family from Arabidopsis thaliana related to the tomato GAST1 gene. Plant Mol Biol 27:743–752. https://doi.org/10.1007/bf00020227

    Article  CAS  PubMed  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Itoh H, Ueguchi-Tanaka M, Sakamoto T, Kayano T, Tanaka H, Ashikari M, Matsuoka M (2002) Modification of rice plant height by suppressing the height-controlling gene, D18, in rice. Breed Sci 52:215–218

    Article  CAS  Google Scholar 

  • Jacob H (2010) The meaning of the columnar apple tree system (cats) for the market in future. Geisenh Ger 430:1–33

    Google Scholar 

  • Jeremy P, Croker SJ, García-Lepe R, Lewis MJ, Hedden P (1999) Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase genes. Plant J 17:547–556

    Article  Google Scholar 

  • Kawai Y, Ono E, Mizutani M (2014) Evolution and diversity of the 2-oxoglutarate-dependent dioxygenase superfamily in plants. Plant J 78:328–343

    Article  CAS  PubMed  Google Scholar 

  • Krost C, Petersen R, Schmidt ER (2012) The transcriptomes of columnar and standard type apple trees (Malus × domestica)—a comparative study. Gene 498:0–230

    Article  CAS  Google Scholar 

  • Krost C, Petersen R, Lokan S, Brauksiepe B, Braun P, Schmidt ER (2013) Evaluation of the hormonal state of columnar apple trees (Malus × domestica) based on high throughput gene expression studies. Plant Mol Biol 81:211–220

    Article  CAS  PubMed  Google Scholar 

  • Lapins K (1967) Inheritance of compact growth type in apple. J Am Soc Hortic Sci 101:133–135

    Article  Google Scholar 

  • Lee DJ, Zeevaart JA (2005) Molecular cloning of GA 2-oxidase 3 from spinach and its ectopic expression in Nicotiana sylvestris. Plant Physiol 138:243–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lespinasse Y (1992) Breeding apple tree: aims and methods. Landerneau, France, pp 103–110

    Google Scholar 

  • Li C et al (2019) Comprehensive expression analysis of Arabidopsis GA2-oxidase genes and their functional insights. Plant Sci 285:1–13

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Lo SF, Yang SY, Chen KT, Hsing YI, Zeevaart JA, Chen LJ, Yu SM (2008) A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell 20:2603–2618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Looney N, Lane W (1983) Spur-type growth mutants of McIntosh apple: a review of their genetics, physiology and field performance. In: International Workshop on Controlling Vigor in Fruit Trees 146:31–46

  • Looney N, Taylor J, Pharis R (1988) Relationship of endogenous gibberellin and cytokinin levels in shoot tips to apical form in four strains of ‘McIntosh’ apple. J Am Soc 113:395–398

    CAS  Google Scholar 

  • Ma X et al (2013) BEAK LIKE SPIKELET1 is required for lateral development of lemma and palea in rice. Plant Mol Biol Rep 31:98–108

    Article  CAS  Google Scholar 

  • Marin J, Jones O, Hadlow W (1993) Micropropagation of columnar apple trees. J Hortic Sci 68:289–297

    Article  CAS  Google Scholar 

  • Morimoto T, Banno K (2015) Genetic and physical mapping of Co, a gene controlling the columnar trait of apple. Tree Genet Genome 11:807

    Article  Google Scholar 

  • Moriya S, Okada K, Haji T, Yamamoto T, Abe K (2012) Fine mapping of Co, a gene controlling columnar growth habit located on apple (Malus × domestica Borkh.) linkage group 10. Plant Breed 131:641–647

    Article  CAS  Google Scholar 

  • Nelson D, Werck-Reichhart D (2011) A P450-centric view of plant evolution. Plant J 66:194–211

    Article  CAS  PubMed  Google Scholar 

  • Okada K et al (2016) Expression of a putative dioxygenase gene adjacent to an insertion mutation is involved in the short internodes of columnar apples (Malus × domestica). J Plant Res 129:1109–1126

    Article  CAS  PubMed  Google Scholar 

  • Okada K, Wada M, Takebayashi Y et al (2020) Columnar growth phenotype in apple results from gibberellin deficiency by ectopic expression of a dioxygenase gene. Tree Physiol 00:1–12. https://doi.org/10.1093/treephys/tpaa049

    Article  Google Scholar 

  • Otto D, Petersen R, Brauksiepe B, Braun P, Schmidt ER (2014) The columnar mutation (“Co gene”) of apple (Malus × domestica) is associated with an integration of a Gypsy-like retrotransposon. Mol Breed 33:863–880

    Article  CAS  Google Scholar 

  • Petersen R, Djozgic H, Rieger B, Rapp S, Schmidt ER (2015) Columnar apple primary roots share some features of the columnar-specific gene expression profile of aerial plant parts as evidenced by RNA-Seq analysis. BMC Plant Biol 15:34. https://doi.org/10.1186/s12870-014-0356-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu Z, Fu Y, Wang L, Li C, Zhu Y (2018) Screening candidate genes of the columnar gene in apple (Malus × domestica Borkh.). J Agric Biotechnol 26:53–63

    Google Scholar 

  • Qu J, Kang SG, Hah C, Jang JC (2016) Molecular and cellular characterization of GA-stimulated transcripts GASA4 and GASA6 in Arabidopsis thaliana. Plant Sci 246:1–10

    Article  CAS  PubMed  Google Scholar 

  • Rubinovich L, Weiss D (2010) The Arabidopsis cysteine-rich protein GASA4 promotes GA responses and exhibits redox activity in bacteria and in planta. Plant J 64:1018–1027. https://doi.org/10.1111/j.1365-313X.2010.04390.x

    Article  CAS  PubMed  Google Scholar 

  • Sasaki A et al (2002) Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416:701–702. https://doi.org/10.1038/416701a

    Article  CAS  PubMed  Google Scholar 

  • Schomburg FM, Bizzell CM, Lee DJ, Zeevaart JA, Amasino RM (2003) Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell 15:151–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrager-Lavelle A, Gath NN, Devisetty UK, Carrera E, López-Díaz I, Blázquez MA, Maloof JN (2019) The role of a class III gibberellin 2-oxidase in tomato internode elongation. Plant J 97:603–615

    Article  CAS  PubMed  Google Scholar 

  • Silva GF et al (2019) Tomato floral induction and flower development are orchestrated by the interplay between gibberellin and two unrelated micro RNA-controlled modules. New Phytol 221:1328–1344

    Article  CAS  PubMed  Google Scholar 

  • Smykal P, Gleissner R, Corbesier L, Apel K, Melzer S (2004) Modulation of flowering responses in different Nicotiana varieties. Plant Mol Biol 55:253–262

    Article  CAS  PubMed  Google Scholar 

  • Sun TP (2011) The molecular mechanism and evolution of the GA–GID1–DELLA signaling module in plants. Curr Biol 21:R338–R345

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Wang P, Zhou T, Rong J, Jia H, Liu Z (2017) Transcriptome analysis of the effects of shell removal and exogenous gibberellin on germination of Zanthoxylum seeds. Sci Rep 7:8521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun X, Wen C, Zhu J et al (2020) Apple columnar gene MdDMR6 increases the salt stress tolerance in transgenic tobacco seedling and apple calli. J Plant Growth Regul. https://doi.org/10.1007/s00344-020-10082-8

    Article  Google Scholar 

  • Thomas SG, Phillips AL, Hedden P (1999) Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Natl Acad Sci 96:4698–4703

    Article  CAS  PubMed  Google Scholar 

  • Wada M et al. (2018) A root-localized gene in normal apples is ectopically expressed in aerial parts of columnar apples. Plant Growth Regul 1–10

  • Wang L, Cai W, Du C, Fu Y, Xie X, Zhu Y (2018) The isolation of the IGT family genes in Malus × domestica and their expressions in four idiotype apple cultivars. Tree Genet Genome 14:46

    Article  Google Scholar 

  • Watanabe M, Suzuki A, Komori S, Bessho H (2004) Comparison of endogenous IAA and cytokinins in shoots of columnar and normal type apple trees. J Jpn Soc Hortic Sci 73:19–24

    Article  CAS  Google Scholar 

  • Wolters PJ (2014) Molecular aspects of columnar growth in apple. Wageningen University phD Thesis. chapter 5:105–132

  • Wolters PJ, Schouten HJ, Velasco R, Si-Ammour A, Baldi P (2013) Evidence for regulation of columnar habit in apple by a putative 2OG-Fe(II) oxygenase. New phytol 200:993–999. https://doi.org/10.1111/nph.12580

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Chen W, Zhou X (1988) Enzyme linked immunosorbent assay for endogenous plant hormones. Plant Physiol Commun (China) 5:53–57

    Google Scholar 

  • Xu K, Wang L, Liu N, Xie X, Zhu Y (2018) Characterization of a SUPERMAN-like Gene, MdSUP11, in apple (Malus x domestica Borkh). Plant Physiol Biochem 125:136–142. https://doi.org/10.1016/j.plaphy.2017.12.006

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi S (2006) Gibberellin biosynthesis in Arabidopsis. Phytochem Rev 5:39–47

    Article  CAS  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Zhang J, Wang Z, Zhu Q, Wang W (2001a) Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiol 127:315–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Xu C, Wang B, Jia J (2001b) Effects of plant growth regulators on secondary wall thickening of cotton fibres. Plant Growth Regul 35:233–237

    Article  CAS  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, He Z, Wu Y (1991) Establishment of an indirect enzyme-linked immunosorbent asssay for zeatin and zeatin riboside. J Beijing Agric Univ (China) 17:145–151

    CAS  Google Scholar 

  • Zhao J et al (2006) Comparison between conventional indirect competitive enzyme-linked immunosorbent assay (icELISA) and simplified icELISA for small molecules. Anal Chim Acta 571:79–85

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Science Foundation of China (Project No. 31672109) and the Construction of Beijing Science and Technology Innovation and Service Capacity in Top Subjects (CEFF-PXM2019_014207_000032). We thank Margaret Biswas and Lesley Benyon, PhD, from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuanDi Zhu.

Ethics declarations

Conflict of interest

All the authors agree with the submission; additionally, we declare that there is no competing interest.

Additional information

Communicated by J. Kovacik.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11738_2021_3243_MOESM1_ESM.tif

Figure S1 The alignment of genomic sequence of MdCo31 in columnar and non-columnar apple tree. ‘Wijcik’, ‘Polka’, ‘Bolero’, ‘Maypole’ and ‘Waltz’ were columnar apple cultivars; ‘McIntosh’, ‘Summerland McIntosh’, ‘Fuji’ and ‘Gala 3’ were the non-columnar cultivar (TIF 3298 KB)

11738_2021_3243_MOESM2_ESM.tif

Figure S2 The phenotypic characterization of 95-days old transgenic tobaccos and wild type (scale bar:10cm) (TIF 1214 KB)

11738_2021_3243_MOESM3_ESM.tif

Figure S3 The growth status of 54 days old transgenic tobaccos and wild type plants after spraying GA3 and paclobutrazol. a, T1 transgenic tobaccos and wild types with 54-days-old were treated by 1mM GA3 and paclobutrazol, and their height analysis (d). b, GA3 +/− treated MdCo31-OE plants and wild types with 54-days-old were treated by 1mM paclobutrazol, and their height analysis (e). c, wild type were treated by 1mM GA3 and paclobutrazol, and their height analysis (f), a-c,scale bar:10cm, (*, P≤0.05, **, P≤0.01 and ***, P≤0.001) (TIF 703 KB)

11738_2021_3243_MOESM4_ESM.tif

Figure S4 T1 transgenic tobaccos and wild type were continually and disconnectedly sprayed by 1mM GA3, and their height analysis, scale bar 10cm (*, P≤0.05, **, P≤0.01 and ***, P≤0.001) (TIF 660 KB)

11738_2021_3243_MOESM5_ESM.tif

Figure S5 MdCo31 protein structure analysis. a, the transmembrane protein structure prediction; b The nuclear localization signal prediction s(TIF 682 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Yu, B., Zhao, Y. et al. A putative 2OG-Fe(II) oxygenase’s response to gibberellin deficiency is related to the internodal growth of columnar apples. Acta Physiol Plant 43, 70 (2021). https://doi.org/10.1007/s11738-021-03243-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-021-03243-z

Keywords

Navigation