Skip to main content

Advertisement

Log in

Investigation of closed-loop supply chains with product refurbishment as integrated location-inventory problem

  • Production Management
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Traditionally, the three most important decisions in Supply Chain Management (SCM) are: Facility location, inventory management and distribution decisions. These decisions are often analysed separately in order to reduce the computational complexity of the corresponding planning problems. This typically results in non-optimal decisions, as in reality the different decisions interact with each other. The major focus of this paper is to bridge the gap between location and inventory planning. The resulting problem is known as location-inventory problem and the e-commerce business serves as motivating example. A solution methods (second-order cone programm) is developed which is able to solve large-scale real-world problem instances. The structure of the closed-loop supply chain network is investigated and altogether promising insights are obtained for decision makers in SCM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kille C, Schwemmer M, Reichenauer C (2015) Top 100 in European Transport and Logistics Services 2013/2014. Tech. Rep. Fraunhofer SCS

  2. Nickel S, Puerto J (2005) Location Theory. Springer-Verlag, Berlin/Heidelberg. https://doi.org/10.1007/3-540-27640-8

    MATH  Google Scholar 

  3. Chopra S, Meindl P (2013) Supply chain management, 5th (edn). Pearson, Boston. http://www.amazon.de/Supply-Chain-Management-Sunil-Chopra/dp/0273765221

  4. Mayer H (2013) Jetzt wird an den Preisen für Ersatzteile geschraubt. https://www.welt.de/print/wams/motor/article118447714/Jetzt-wird-an-den-Preisen-fuer-Ersatzteile-geschraubt.html

  5. Daskin MS (2013) Network and discrete location: models, algorithms, and applications, 2nd edn. Wiley, Hoboken, New Jersey

    MATH  Google Scholar 

  6. Laporte G, Nickel S (2015) Location science. Springer International Publishing. https://doi.org/10.1007/978-3-319-13111-5. http://www.amazon.com/Location-Science-Gilbert-Laporte/dp/3319131109/ref=sr_1_1?ie=UTF8&qid=1430864101&sr=8-1&keywords=Location+science

  7. Melo MT, Nickel S, Saldanha-da Gama F (2009) Facility location and supply chain management: a review. Eur J Oper Res 196(2):401. https://doi.org/10.1016/j.ejor.2008.05.007

    Article  MathSciNet  MATH  Google Scholar 

  8. Arnold D, Isermann H, Kuhn A, Tempelmeier H, Furmans K (eds) (2008) Handbuch Logistik. VDI-Buch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72929-7

  9. Nahmias S, Olsen TL (2015) Production and operations analysis. Waveland Press, Long Grove

    Google Scholar 

  10. Zipkin PH (2000) Foundations of inventory management. McGraw-Hill, Boston

    MATH  Google Scholar 

  11. Nyhuis P, Wiendahl HP (2012) Logistische Kennlinien. Springer, Berlin Heidelberg. https://doi.org/10.1007/978-3-540-92839-3

    Book  Google Scholar 

  12. Farahani RZ, Rashidi Bajgan H, Fahimnia B, Kaviani M, Bajgan HR, Fahimnia B (2014) Location-inventory problem in supply chains: a modelling review. Int J Prod Res 53(12):3769. https://doi.org/10.1080/00207543.2014.988889

    Article  Google Scholar 

  13. Eppen GD (1979) Effects of centralization on expected costs in a multi-location newsboy problem. Manag Sci 25(5):498. https://doi.org/10.1287/mnsc.25.5.498

    Article  MATH  Google Scholar 

  14. Schmitt AJ, Sun SA, Snyder LV, Shen ZJM (2015) Centralization versus decentralization: Risk pooling, risk diversification, and supply chain disruptions. Omega 52:201. https://doi.org/10.1016/j.omega.2014.06.002. http://linkinghub.elsevier.com/retrieve/pii/S0305048314000759

  15. Daskin MS, Coullard CR, Shen ZJM (2002) An Inventory-Location Model: Formulation, Solution Algorithm and Computational Results. Ann Oper Res 110(1–4):83. https://doi.org/10.1023/A:1020763400324. http://www.springerlink.com/content/w508121545673752/abstract//www.springerlink.com/content/w508121545673752/fulltext.pdf http://link.springer.com/article/10.1023/A

  16. Shen ZJM, Coullard C, Daskin MS (2003) A joint location-inventory model. Trans Sci 37(1):40

    Article  Google Scholar 

  17. Miranda PA, Garrido RA (2004) Incorporating inventory control decisions into a strategic distribution network design model with stochastic demand. Trans Res Part E Logist Trans Rev 40(3):183. https://doi.org/10.1016/j.tre.2003.08.006

    Article  Google Scholar 

  18. Miranda PA, Garrido RA (2006) A simultaneous inventory control and facility location model with stochastic capacity constraints. Netw Spat Econ 6(1):39. https://doi.org/10.1007/s11067-006-7684-5

    Article  MathSciNet  MATH  Google Scholar 

  19. Miranda PA, Garrido RA (2009) Inventory service-level optimization within distribution network design problem. Int J Prod Econ 122(1):276. https://doi.org/10.1016/j.ijpe.2009.06.010

    Article  Google Scholar 

  20. Snyder LV, Daskin MS, Teo CP (2007) The stochastic location model with risk pooling. Eur J Oper Res 179(3):1221. https://doi.org/10.1016/j.ejor.2005.03.076. http://linkinghub.elsevier.com/retrieve/pii/S0377221706000877

  21. Chen Q, Li X, Ouyang Y (2011) Joint inventory-location problem under the risk of probabilistic facility disruptions. Trans Res Part B Methodol 45(7):991. https://doi.org/10.1016/j.trb.2011.04.004. http://linkinghub.elsevier.com/retrieve/pii/S0191261511000488

  22. Atamtürk A, Berenguer G, Shen ZjM (2012) A conic integer programming approach to stochastic joint location-inventory problems. Oper Res 60(2):366

    Article  MathSciNet  MATH  Google Scholar 

  23. Ozsen L, Coullard CR, Daskin MS (2008) Capacitated warehouse location model with risk pooling. Naval Res Log 55(4):295. https://doi.org/10.1002/nav.20282 http://www.interscience.wiley.com/jpages/0894-069X/

  24. Chen Y, Chan F, Chung S (2014) An integrated closed-loop supply chain model with location allocation problem and product recycling decisions. Int J Prod Res 53(10):3120. https://doi.org/10.1080/00207543.2014.975849. http://www.scopus.com/inward/record.url?eid=2-s2.0-84925247079&partnerID=tZOtx3y1

  25. Zhang ZH, Berenguer G, Shen ZJ (2015) A Capacitated Facility Location Model with Bidirectional Flows. Transportation Science 49(1):114. https://doi.org/10.1287/trsc.2013.0496. <GotoISI>://WOS:000349070100008

  26. Kaya O, Urek B (2016) A mixed integer nonlinear programming model and heuristic solutions for location, inventory and pricing decisions in a closed loop supply chain. Comput Oper Res 65:93. https://doi.org/10.1016/j.cor.2015.07.005

    Article  MathSciNet  MATH  Google Scholar 

  27. Kontio C, Hortig J, Nagel TS (2013) Renditekiller Retouren: Amazon sperrt Kunden mit Kaufbulimie. http://www.handelsblatt.com/unternehmen/handel-konsumgueter/renditekiller-retouren-auch-zalando-hat-sich-finger-verbrannt/8572908-3.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Kuhnle.

Appendices

A Appendix

$$\begin{aligned}&\text{ NLMIP } \quad \text{ min } \sum _{j \in \mathcal {J}} \sum _{k \in \mathcal {K}} f_{j,k} X_{j,k} + \sum _{j' \in \mathcal {J}} \sum _{k' \in \mathcal {K}} f_{j',k'}^{R} X_{j',k'}^{R} \nonumber \\&\qquad - \sum _{j' \in \mathcal {J}} \sum _{k \in \mathcal {K}} \sum _{k' \in \mathcal {K}} \left( f_{j',k} + f_{j',k'}^{R} \right) \eta _{j',k,k'} Z_{j',k,k'} \nonumber \\&\qquad + \sum _{i \in \mathcal {I}} \sum _{j \in \mathcal {J}} \sum _{p \in \mathcal {P}} \left( t_{j,p} + t_{i,j,p} \right) \mu _{i,p} Y_{i,j,p} \nonumber \\&\qquad + \sum _{i \in \mathcal {I}} \sum _{j \in \mathcal {J}} \sum _{p \in \mathcal {P}} t_{i,j,p} \mu _{i,p} Y_{i,j,p}^{R} \nonumber \\&\qquad + \sum _{j \in \mathcal {J}} \sum _{p \in \mathcal {P}} o_{j,p} \frac{\sum _{i \in \mathcal {I}} \mu _{i,p} Y_{i,j,p}}{Q_{j,p}} \nonumber \\&\qquad + \sum _{j \in \mathcal {J}} \sum _{p \in \mathcal {P}} h_{j,p} \frac{Q_{j,p}}{2} \nonumber \\&\qquad + \sum _{j \in \mathcal {J}} \sum _{p \in \mathcal {P}} h_{j,p} z_{\alpha } \sqrt{ l_{j,p} \left( \sum _{i \in \mathcal {I}} \sigma _{i,p}^2 A_{i,j,p} + \sum _{i \in \mathcal {I}} \sum _{j' \in \mathcal {J}} \rho _{i,p}^2 \sigma _{i,p}^2 \left( Y_{i,j',j,p}^{R} \right) ^ 2 \right) } \nonumber \\&\qquad + \sum _{i \in \mathcal {I}} \sum _{j' \in \mathcal {J}} \sum _{j \in \mathcal {J}} \sum _{p \in \mathcal {P}} \left( t_{i,j',p}^{R} + r_{j',p} + h_{j',p}^{R} \tau _{j',p} \right. \nonumber \\ &\qquad \left. + t_{j',j,p}^{T} \right) \rho _{i,p} \mu _{i,p} Y_{i,j',j,p}^{R}\, + \sum _{i \in \mathcal {I}} \sum _{j' \in \mathcal {J}} \sum _{p \in \mathcal {P}} \left( t_{i,j',p}^{R} + h_{j',p}^{R} \, + s_{j',p} \right) \rho _{i,p} \mu _{i,p} \xi _{i,j',p} \nonumber \\ &\qquad \text{ s.t. } \quad Y_{i,j,p} + Y_{i,j,p}^{R} = A_{i,j,p} \qquad \forall i \in \mathcal {I}, \forall j \in \mathcal {J}, \forall p \in \mathcal {P} \end{aligned}$$
(1)
$$\begin{aligned}&\sum _{j \in \mathcal {J}} A_{i,j,p} = 1 \qquad \forall i \in \mathcal {I}, \forall p \in \mathcal {P} \end{aligned}$$
(2)
$$\begin{aligned}&A_{i,j,p} \le \sum _{k \in \mathcal {K}} X_{j,k} \qquad \forall i \in \mathcal {I}, \forall j \in \mathcal {J}, \forall p \in \mathcal {P} \end{aligned}$$
(3)
$$\begin{aligned}&\sum _{k \in \mathcal {K}} X_{j,k} \le 1 \qquad \forall j \in \mathcal {J} \end{aligned}$$
(4)
$$\begin{aligned}&\sum _{k \in \mathcal {K}} X_{j,k} \le A_{j,j,p} \qquad \forall j \in \mathcal {J}, \forall p \in \mathcal {P} \end{aligned}$$
(5)
$$\begin{aligned}&\sum _{p \in \mathcal {P}} \Bigg ( Q_{j,p} + z_{\alpha } \sqrt{ l_{j,p} \left( \sum _{i \in \mathcal {I}} \sigma _{i,p}^2 A_{i,j,p} + \sum _{i \in \mathcal {I}} \sum _{j' \in \mathcal {J}} \rho _{i,p}^2 \sigma _{i,p}^2 \left( Y_{i,j',j,p}^{R} \right) ^ 2 \right) } \nonumber \\&\qquad + l_{j,p} \sum _{i \in \mathcal {I}} \mu _{i,p} A_{i,j,p} \Bigg ) \le \sum _{k \in \mathcal {K}} c_{j,k} X_{j,k} \qquad \forall j \in \mathcal {J} \end{aligned}$$
(6)
$$\begin{aligned}&\sum _{i \in \mathcal {I}} \sum _{j' \in \mathcal {J}} \rho _{i,p} \mu _{i,p} Y_{i,j',j,p}^{R}\nonumber \\&\quad = \sum _{i \in \mathcal {I}} \mu _{i,p} Y_{i,j,p}^{R} \qquad \forall j \in \mathcal {J}, \forall p \in \mathcal {P}&\end{aligned}$$
(7)
$$\begin{aligned}&\sum _{j \in \mathcal {J}} Y_{i,j',j,p}^{R} + \xi _{i,j',p} \nonumber \\&\quad = B_{i,j',p} \qquad \forall i \in \mathcal {I}, \forall j' \in \mathcal {J}, \forall p \in \mathcal {P} \end{aligned}$$
(8)
$$\begin{aligned}&\sum _{j' \in \mathcal {J}} B_{i,j',p} = 1 \qquad \forall i \in \mathcal {I}, \forall p \in \mathcal {P} \end{aligned}$$
(9)
$$\begin{aligned}&B_{i,j',p} \le \sum _{k' \in \mathcal {K}} X_{j',k'}^{R} \qquad \forall i \in \mathcal {I}, \forall j' \in \mathcal {J}, \forall p \in \mathcal {P} \end{aligned}$$
(10)
$$\begin{aligned}&\sum _{k' \in \mathcal {K}} X_{j',k'}^{R} \le 1 \qquad \forall j' \in \mathcal {J} \end{aligned}$$
(11)
$$\begin{aligned}&\sum _{i \in \mathcal {I}} \sum _{p \in \mathcal {P}} \left( \rho _{i,p} \mu _{i,p} \xi _{i,j',p} + \sum _{j \in \mathcal {J}} \tau _{j',p} \rho _{i,p} \mu _{i,p} Y_{i,j',j,p}^{R} \right) \nonumber \\&\quad \le \sum _{k' \in \mathcal {K}} c_{j',k'}^{R} X_{j',k'}^{R} \quad \forall j' \in \mathcal {J} \end{aligned}$$
(12)
$$\begin{aligned}&X_{j',k} \cdot X_{j',k'}^{R} = Z_{j',k,k'} \qquad \forall j' \in \mathcal {J}, \forall k \in \mathcal {K}, \forall k' \in \mathcal {K} \end{aligned}$$
(13)
$$\begin{aligned}&X_{j,k} \in \left\{ 0, 1 \right\} \qquad \forall j \in \mathcal {J}, \forall k \in \mathcal {K} \end{aligned}$$
(14)
$$\begin{aligned}&A_{i,j,p} \in \left\{ 0, 1 \right\} \qquad \forall i \in \mathcal {I}, \forall j \in \mathcal {J}, \forall p \in \mathcal {P} \end{aligned}$$
(15)
$$\begin{aligned}&Y_{i,j,p} \in \left[ 0, 1 \right] \qquad \forall i \in \mathcal {I}, \forall j \in \mathcal {J}, \forall p \in \mathcal {P} \end{aligned}$$
(16)
$$\begin{aligned}&Y_{i,j,p}^{R} \in \left[ 0, 1 \right] \qquad \forall i \in \mathcal {I}, \forall j \in \mathcal {J}, \forall p \in \mathcal {P} \end{aligned}$$
(17)
$$\begin{aligned}&Q_{j,p} \ge 0 \qquad \forall j \in \mathcal {J}, \forall p \in \mathcal {P} \end{aligned}$$
(18)
$$\begin{aligned}&X_{j',k'}^{R} \in \left\{ 0, 1 \right\} \qquad \forall j' \in \mathcal {J}, \forall k' \in \mathcal {K} \end{aligned}$$
(19)
$$\begin{aligned}&B_{i,j',p} \in \left\{ 0, 1 \right\} \qquad \forall i \in \mathcal {I}, \forall j' \in \mathcal {J}, \forall p \in \mathcal {P} \end{aligned}$$
(20)
$$\begin{aligned}&Y_{i,j',j,p}^{R} \in \left[ 0, 1 \right] \qquad \forall i \in \mathcal {I}, \forall j \in \mathcal {J}, \forall j' \in \mathcal {J}, \forall p \in \mathcal {P} \end{aligned}$$
(21)
$$\begin{aligned}&\xi _{i,j',p} \in \left[ 0, 1 \right] \qquad \forall i \in \mathcal {I}, \forall j' \in \mathcal {J}, \forall p \in \mathcal {P} \end{aligned}$$
(22)
$$\begin{aligned}&Z_{j',k,k'} \in \left\{ 0, 1 \right\} \qquad \forall j' \in \mathcal {J}, \forall k \in \mathcal {K}, \forall k' \in \mathcal {K} \end{aligned}$$
(23)

B Appendix

$$\begin{aligned}&\text{ SOCP } \quad \text{ min } \sum _{j \in \mathcal {J}} \sum _{k \in \mathcal {K}} f_{j,k} X_{j,k} + \sum _{j' \in \mathcal {J}} \sum _{k' \in \mathcal {K}} f_{j',k'}^{R} X_{j',k'}^{R} \nonumber \\&\qquad - \sum _{j' \in \mathcal {J}} \sum _{k \in \mathcal {K}} \sum _{k' \in \mathcal {K}} \left( f_{j',k} + f_{j',k'}^{R} \right) \eta _{j',k,k'} Z_{j',k,k'} \nonumber \\&\qquad + \sum _{i \in \mathcal {I}} \sum _{j \in \mathcal {J}} \sum _{p \in \mathcal {P}} \left( t_{j,p} + t_{i,j,p} \right) \mu _{i,p} Y_{i,j,p}\nonumber \\&\qquad + \sum _{i \in \mathcal {I}} \sum _{j \in \mathcal {J}} \sum _{p \in \mathcal {P}} t_{i,j,p} \mu _{i,p} Y_{i,j,p}^{R} \nonumber \\&\qquad + \sum _{j \in \mathcal {J}} \sum _{p \in \mathcal {P}} h_{j,p} \left( z_{\alpha } S_{j,p} + \frac{\zeta _{j,p}}{2} \right) \nonumber \\&\qquad + \sum _{i \in \mathcal {I}} \sum _{j' \in \mathcal {J}} \sum _{j \in \mathcal {J}} \sum _{p \in \mathcal {P}} \left( t_{i,j',p}^{R} + r_{j',p} + h_{j',p}^{R} \tau _{j',p} \right. \nonumber \\&\qquad \left. +\, t_{j',j,p}^{T} \right) \rho _{i,p} \mu _{i,p} Y_{i,j',j,p}^{R} \nonumber \\&\qquad + \sum _{i \in \mathcal {I}} \sum _{j' \in \mathcal {J}} \sum _{p \in \mathcal {P}} \left( t_{i,j',p}^{R} + h_{j',p}^{R} + s_{j',p} \right) \rho _{i,p} \mu _{i,p} \xi _{i,j',p} \nonumber \\&\qquad \text{ s.t. } \quad Y_{i,j,p} + Y_{i,j,p}^{R} = A_{i,j,p} \qquad \forall i \in \mathcal {I}, \forall j \in \mathcal {J}, \forall p \in \mathcal {P} \end{aligned}$$
(24)
$$\begin{aligned}&\sum _{j \in \mathcal {J}} A_{i,j,p} = 1 \qquad \forall i \in \mathcal {I}, \forall p \in \mathcal {P} \end{aligned}$$
(25)
$$\begin{aligned}&A_{i,j,p} \le \sum _{k \in \mathcal {K}} X_{j,k} \qquad \forall i \in \mathcal {I}, \forall j \in \mathcal {J}, \forall p \in \mathcal {P} \end{aligned}$$
(26)
$$\begin{aligned}&\sum _{k \in \mathcal {K}} X_{j,k} \le 1 \qquad \forall j \in \mathcal {J} \end{aligned}$$
(27)
$$\begin{aligned}&\sum _{k \in \mathcal {K}} X_{j,k} \le A_{j,j,p} \qquad \forall j \in \mathcal {J}, \forall p \in \mathcal {P} \end{aligned}$$
(28)
$$\begin{aligned}&l_{j,p} \left( \sum _{i \in \mathcal {I}} \sigma _{i,p}^2 A_{i,j,p}^2 + \sum _{i \in \mathcal {I}} \sum _{j' \in \mathcal {J}} \rho _{i,p}^2 \sigma _{i,p}^2 \left( Y_{i,j',j,p}^{R} \right) ^ 2 \right) \nonumber \\&\quad \le S_{j,p}^2 \qquad \forall j \in \mathcal {J}, \forall p \in \mathcal {P} \end{aligned}$$
(29)
$$\begin{aligned}&\frac{2 o_{j,p}}{h_{j,p}} \sum _{i \in \mathcal {I}} \mu _{i,p} \varPsi _{i,j,p} ^ 2 + \phi _{j,p} ^ 2 \nonumber \\&\qquad - \frac{\zeta _{j,p} ^ 2}{4} \le 0 \qquad \forall j \in \mathcal {J}, \forall p \in \mathcal {P} \end{aligned}$$
(30)
$$\begin{aligned}&Q_{j,p} - \frac{\zeta _{j,p}}{2} = \phi _{j,p} \qquad \forall j \in \mathcal {J}, \forall p \in \mathcal {P} \end{aligned}$$
(31)
$$\begin{aligned}&\sum _{p \in \mathcal {P}} \left( Q_{j,p} + z_{\alpha } S_{j,p} + l_{j,p} \sum _{i \in \mathcal {I}} \mu _{i,p} A_{i,j,p} \right) \nonumber \\&\quad \le \sum _{k \in \mathcal {K}} c_{j,k} X_{j,k} \qquad \forall j \in \mathcal {J} \end{aligned}$$
(32)
$$\begin{aligned}&\sum _{i \in \mathcal {I}} \sum _{j' \in \mathcal {J}} \rho _{i,p} \mu _{i,p} Y_{i,j',j,p}^{R}\nonumber \\&\quad = \sum _{i \in \mathcal {I}} \mu _{i,p} Y_{i,j,p}^{R} \qquad \forall j \in \mathcal {J}, \forall p \in \mathcal {P} \end{aligned}$$
(33)
$$\begin{aligned}&\sum _{j \in \mathcal {J}} Y_{i,j',j,p}^{R} + \xi _{i,j',p} \nonumber \\&\quad =B_{i,j',p} \qquad \forall i \in \mathcal {I}, \forall j' \in \mathcal {J}, \forall p \in \mathcal {P} \end{aligned}$$
(34)
$$\begin{aligned}&\sum _{j' \in \mathcal {J}} B_{i,j',p} = 1 \qquad \forall i \in \mathcal {I}, \forall p \in \mathcal {P} \end{aligned}$$
(35)
$$\begin{aligned}&B_{i,j',p} \le \sum _{k' \in \mathcal {K}} X_{j',k'}^{R} \qquad \forall i \in \mathcal {I}, \forall j' \in \mathcal {J}, \forall p \in \mathcal {P} \end{aligned}$$
(36)
$$\begin{aligned}&\sum _{k' \in \mathcal {K}} X_{j',k'}^{R} \le 1 \qquad \forall j' \in \mathcal {J} \end{aligned}$$
(37)
$$\begin{aligned}&\sum _{i \in \mathcal {I}} \sum _{p \in \mathcal {P}} \left( \rho _{i,p} \mu _{i,p} \xi _{i,j',p} + \sum _{j \in \mathcal {J}} \tau _{j',p} \rho _{i,p} \mu _{i,p} Y_{i,j',j,p}^{R} \right) \nonumber \\&\quad \le \sum _{k' \in \mathcal {K}} c_{j',k'}^{R} X_{j',k'}^{R} \qquad \forall j' \in \mathcal {J} \end{aligned}$$
(38)
$$\begin{aligned}&X_{j',k} + X_{j',k'}^{R} - 2 Z_{j',k,k'} \ge 0 \qquad \forall j' \in \mathcal {J}, \forall k \in \mathcal {K}, \forall k' \in \mathcal {K} \end{aligned}$$
(39)
$$\begin{aligned}&X_{j',k} + X_{j',k'}^{R} - Z_{j',k,k'} \le 1 \qquad \forall j' \in \mathcal {J}, \forall k \in \mathcal {K}, \forall k' \in \mathcal {K} \end{aligned}$$
(40)
$$\begin{aligned}&\varPsi _{i,j,p} = \sum _{s \in \mathcal {S}} \left( a_s U_{i,j,p,s} \,+\, b_s V_{i,j,p,s} \right) \qquad \forall i \in \mathcal {I}, \forall j \in \mathcal {J}, \forall p \in \mathcal {P} \end{aligned}$$
(41)
$$\begin{aligned}&low_s U_{i,j,p,s} \nonumber \\&\quad \le Y_{i,j,p} \qquad \forall i \in \mathcal {I}, \forall j \in \mathcal {J}, \forall p \in \mathcal {P}, \forall s \in \mathcal {S} \end{aligned}$$
(42)
$$\begin{aligned}&Y_{i,j,p} \le up_s U_{i,j,p,s} \nonumber \\&\qquad + \text{ M } \left( 1 - U_{i,j,p,s} \right) \qquad \forall i \in \mathcal {I},\nonumber \\&\qquad \forall j \in \mathcal {J}, \forall p \in \mathcal {P}, \forall s \in \mathcal {S} \end{aligned}$$
(43)
$$\begin{aligned}&V_{i,j,p,s} \le U_{i,j,p,s} \qquad \forall i \in \mathcal {I}, \forall j \in \mathcal {J}, \forall p \in \mathcal {P}, \forall s \in \mathcal {S} \end{aligned}$$
(44)
$$\begin{aligned}&V_{i,j,p,s} \le Y_{i,j,p} \qquad \forall i \in \mathcal {I}, \forall j \in \mathcal {J}, \forall p \in \mathcal {P}, \forall s \in \mathcal {S} \end{aligned}$$
(45)
$$\begin{aligned}&V_{i,j,p,s} \ge Y_{i,j,p}\nonumber \\&\qquad - \left( 1 - U_{i,j,p,s} \right) \qquad \forall i \in \mathcal {I}, \forall j \in \mathcal {J}, \forall p \in \mathcal {P}, \forall s \in \mathcal {S} \end{aligned}$$
(46)
$$\begin{aligned}&\sum _{s \in \mathcal {S}} U_{i,j,p,s} = 1 \qquad \forall i \in \mathcal {I}, \forall j \in \mathcal {J}, \forall p \in \mathcal {P} \end{aligned}$$
(47)
$$\begin{aligned}&X_{j,k} \in \left\{ 0, 1 \right\} \qquad \forall j \in \mathcal {J}, \forall k \in \mathcal {K} \end{aligned}$$
(48)
$$\begin{aligned}&A_{i,j,p} \in \left\{ 0, 1 \right\} \qquad \forall i \in \mathcal {I}, \forall j \in \mathcal {J}, \forall p \in \mathcal {P} \end{aligned}$$
(49)
$$\begin{aligned}&Y_{i,j,p} \in \left[ 0, 1 \right] \qquad \forall i \in \mathcal {I}, \forall j \in \mathcal {J}, \forall p \in \mathcal {P} \end{aligned}$$
(50)
$$\begin{aligned}&Y_{i,j,p}^{R} \in \left[ 0, 1 \right] \qquad \forall i \in \mathcal {I}, \forall j \in \mathcal {J}, \forall p \in \mathcal {P} \end{aligned}$$
(51)
$$\begin{aligned}&\varPsi _{i,j,p} \in \left[ 0, 1 \right] \qquad \forall i \in \mathcal {I}, \forall j \in \mathcal {J}, \forall p \in \mathcal {P} \end{aligned}$$
(52)
$$\begin{aligned}&S_{j,p}, Q_{j,p}, \zeta _{j,p}, \phi _{j,p} \ge 0 \qquad \forall j \in \mathcal {J}, \forall p \in \mathcal {P} \end{aligned}$$
(53)
$$\begin{aligned}&X_{j',k'}^{R} \in \left\{ 0, 1 \right\} \qquad \forall j' \in \mathcal {J}, \forall k' \in \mathcal {K} \end{aligned}$$
(54)
$$\begin{aligned}&B_{i,j',p} \in \left\{ 0, 1 \right\} \qquad \forall i \in \mathcal {I}, \forall j' \in \mathcal {J}, \forall p \in \mathcal {P} \end{aligned}$$
(55)
$$\begin{aligned}&Y_{i,j',j,p}^{R} \in \left[ 0, 1 \right] \qquad \forall i \in \mathcal {I}, \forall j \in \mathcal {J}, \forall j' \in \mathcal {J}, \forall p \in \mathcal {P} \end{aligned}$$
(56)
$$\begin{aligned}&\xi _{i,j',p} \in \left[ 0, 1 \right] \qquad \forall i \in \mathcal {I}, \forall j' \in \mathcal {J}, \forall p \in \mathcal {P} \end{aligned}$$
(57)
$$\begin{aligned}&Z_{j',k,k'} \in \left\{ 0, 1 \right\} \qquad \forall j' \in \mathcal {J}, \forall k \in \mathcal {K}, \forall k' \in \mathcal {K} \end{aligned}$$
(58)
$$\begin{aligned}&U_{i,j,p,s} \in \left\{ 0,1 \right\} \qquad \forall i \in \mathcal {I}, \forall j \in \mathcal {J}, \forall p \in \mathcal {P}, \forall s \in \mathcal {S} \end{aligned}$$
(59)
$$\begin{aligned}&V_{i,j,p,s} \in \left[ 0,1 \right] \qquad \forall i \in \mathcal {I}, \forall j \in \mathcal {J}, \forall p \in \mathcal {P}, \forall s \in \mathcal {S} \end{aligned}$$
(60)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuhnle, A., Lanza, G. Investigation of closed-loop supply chains with product refurbishment as integrated location-inventory problem. Prod. Eng. Res. Devel. 13, 293–303 (2019). https://doi.org/10.1007/s11740-019-00885-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-019-00885-4

Keywords

Navigation