Skip to main content
Log in

Limit theorems for sequences of random trees

  • Original Paper
  • Published:
TEST Aims and scope Submit manuscript

Abstract

We consider a random tree and introduce a metric in the space of trees to define the “mean tree” as the tree minimizing the average distance to the random tree. When the resulting metric space is compact we have laws of large numbers and central limit theorems for sequence of independent identically distributed random trees. As application we propose tests to check if two samples of random trees have the same law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Billera LJ, Holmes SP, Vogtmann K (2001) Geometry of the space of phylogenetic trees. Adv Appl Math 27(4):733–767

    Article  MATH  MathSciNet  Google Scholar 

  • Busch JR, Ferrari PA, Flesia AG, Fraiman R, Grynberg S, Leonardi F (2006) Testing statistical hypothesis on random trees. Preprint

  • Critchlow DE (1985) Metric methods for analysing partially ranked data. Lectures notes in statistics, vol. 34. Springer, Berlin

    Google Scholar 

  • De Fitte PR (1997) Théorème ergodique ponctuel et lois fortes des grandes nombres pour des points aléatoires d’un espace métrique à courbure négative. Ann Probab 25(2):738–766

    Article  MATH  MathSciNet  Google Scholar 

  • Es-Sahib A, Heinich H (1999) Barycentre canonique pour un espace métrique à courbure négative. In: Séminaire de probabilités, XXXIII. Lecture notes in math, vol 1709. Springer, Berlin, pp 355–370

    Google Scholar 

  • Haldane JBS (1948) Note on the median of a multivariate distribution. Biometrika 35:414–415

    MATH  MathSciNet  Google Scholar 

  • Herer W (1992) Mathematical expectation and strong law of large numbers for random variables with values in a metric space of negative curvature. Probab Math Stat 13(1):59–70

    MATH  MathSciNet  Google Scholar 

  • Kingman JFC (1982) The coalescent. Stoch Proc Appl 13:235–248

    Article  MATH  MathSciNet  Google Scholar 

  • Kurata K, Minami N (2004) The equivalence of two constructions of Galton–Watson processes. Preprint mp_arc 04-295

  • Ledoux M, Talagrand M (1991) Probability in Banach spaces. Isoperimetry and processes. Springer, Berlin

    MATH  Google Scholar 

  • Liggett TM (1985) Interacting particle systems. Springer, New York

    MATH  Google Scholar 

  • Milasevic P, Ducharme GR (1987) Uniqueness of the spatial median. Ann Stat 15:1332–1333

    Article  MATH  MathSciNet  Google Scholar 

  • Neveu J (1986) Arbres et processus de Galton–Watson. Ann Inst Henri Poincaré, Probab Stat 22:199–207

    MATH  MathSciNet  Google Scholar 

  • Otter R (1949) The multiplicative process. Ann Math Stat 20:206–224

    Article  MATH  MathSciNet  Google Scholar 

  • Sverdrup-Thygeson H (1981) Strong law of large numbers for measures of central tendency and dispersion of random variables in compact metric spaces. Ann Stat 9:141–145

    Article  MATH  MathSciNet  Google Scholar 

  • Valiente G (2001) An efficient bottom-up distance between trees. In: Proc 8th int symposium on string processing and information retrieval, SPIRE 2001: IEEE Computer Science Press, pp 212–219

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Fraiman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balding, D., Ferrari, P.A., Fraiman, R. et al. Limit theorems for sequences of random trees. TEST 18, 302–315 (2009). https://doi.org/10.1007/s11749-008-0092-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11749-008-0092-z

Keywords

Mathematics Subject Classification (2000)

Navigation