Skip to main content
Log in

Inspection of textile fabrics based on the optimal Gabor filter

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Defect detection and quality control play an important role in the textile industry. In this paper, an automatic algorithm based on the optimal Gabor filter is proposed for real-time inspection of textile fabrics. The Cuckoo optimization algorithm is adopted to optimize the parameters of the Gabor filter. Also, an adaptive local binarization method is proposed, which enhances the performance of our algorithm. In order to locate the defects, the filtered image is divided into non-overlapping blocks. Then, the candidate defective blocks are binarized using adaptive thresholds, which are determined by blocks statistics. The performance of the proposed algorithm is evaluated through different types of fabrics in the TILDA database and an online Fabric Stain Dataset. The experimental results demonstrate the efficiency of the proposed method in detecting defects on the plain, regular and irregular patterned fabrics. Furthermore, the comparative results are provided to show the robustness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Malek, A. S.: Online fabric inspection by image processing technology. Ph.D. dissertation, Université de Haute Alsace-Mulhouse (2012).

  2. Ngan, H.Y., Pang, G.K., Yung, N.H.: Automated fabric defect detection—a review. Image Vis. Comput. 29, 442–458 (2011)

    Article  Google Scholar 

  3. Ngan, H.Y., Pang, G.K., Yung, N.H.: Performance evaluation for motif-based patterned texture defect detection. IEEE Trans. Autom. Sci. Eng. 7, 58–72 (2010)

    Article  Google Scholar 

  4. Tolba, A.S.: A novel multiscale-multidirectional autocorrelation approach for defect detection in homogeneous flat surfaces. Mach. Vis. Appl. 23, 739–750 (2012)

    Article  Google Scholar 

  5. Raheja, J.L., Ajay, B., Chaudhary, A.: Real time fabric defect detection system on an embedded DSP platform. Optik 124, 5280–5284 (2013)

    Article  Google Scholar 

  6. Mak, K.-L., Peng, P., Yiu, K.: Fabric defect detection using morphological filters. Image Vis. Comput. 27, 1585–1592 (2009)

    Article  Google Scholar 

  7. Hanmandlu, M., Choudhury, D., Dash, S.: Detection of defects in fabrics using topothesy fractal dimension features. SIViP 9, 1521–1530 (2015)

    Article  Google Scholar 

  8. Malek, A.S., Drean, J.-Y., Bigue, L., Osselin, J.-F.: Optimization of automated online fabric inspection by fast Fourier transform (FFT) and cross-correlation. Text. Res. J. 83, 256–268 (2013)

    Article  Google Scholar 

  9. Jeffrey Kuo, C.-F., Shih, C.-Y., Huang, C.-C., Wen, Y.-M.: Image inspection of knitted fabric defects using wavelet packets. Text. Res. J. 86, 553–560 (2016)

    Article  Google Scholar 

  10. Baykal, I. C., Muscedere, R.,Jullien, G. A.: On the use of hash functions for defect detection in textures for in-camera web inspection systems. In: IEEE International Symposium on Circuits and Systems (ISCAS) pp 665–668 (2002)

  11. Ngan, H.Y., Pang, G.K., Yung, S., Ng, M.K.: Wavelet based methods on patterned fabric defect detection. Pattern Recognit. 38, 559–576 (2005)

    Article  Google Scholar 

  12. Jia, L., Chen, C., Xu, S., Shen, J.: Fabric defect inspection based on lattice segmentation and template statistics. Inf. Sci. 512, 964–984 (2020)

    Article  Google Scholar 

  13. Ngan, H. Y.,Pang, G. K.: Novel method for patterned fabric inspection using Bollinger bands. Opt. Eng., 45, 087202–087202–087215 (2006)

  14. Ngan, H.Y., Pang, G.K.: Regularity analysis for patterned texture inspection. IEEE Trans. Autom. Sci. Eng. 6, 131–144 (2009)

    Article  Google Scholar 

  15. Dunn, D., Higgins, W.E., Wakeley, J.: Texture segmentation using 2-D Gabor elementary functions. EEE Trans. Pattern Anal. Mach. Intell. 16, 130–149 (1994)

    Article  Google Scholar 

  16. Kumar, A., Pang, G.K.: Defect detection in textured materials using Gabor filters. IEEE Trans. Ind. Appl 38, 425–440 (2002)

    Article  Google Scholar 

  17. Bissi, L., Baruffa, G., Placidi, P., Ricci, E., Scorzoni, A., Valigi, P.: Automated defect detection in uniform and structured fabrics using Gabor filters and PCA. J. Vis. Commun. Image R 24, 838–845 (2013)

    Article  Google Scholar 

  18. Jing, J., Liu, S., Li, P., Zhang, L.: The fabric defect detection based on CIE L* a* b* color space using 2-D Gabor filter. J. Text I(107), 1305–1313 (2016)

    Google Scholar 

  19. Jing, J., Yang, P., Li, P., Kang, X.: Supervised defect detection on textile fabrics via optimal Gabor filter. J. Ind. Text. 44, 40–57 (2014)

    Article  Google Scholar 

  20. Jing, J., Chen, S., Li, P.: Automatic defect detection of patterned fabric via combining the optimal gabor filter and golden image subtraction. JFBI 8, 229–239 (2015)

    Article  Google Scholar 

  21. Hu, G.-H.: Optimal ring Gabor filter design for texture defect detection using a simulated annealing algorithm. In: International Conference on Information Science, Electronics and Electrical Engineering (ISEEE), pp. 860–864 (2014)

  22. Tong, L., Wong, W.K., Kwong, C.: Differential evolution-based optimal Gabor filter model for fabric inspection. Neurocomputing 173, 1386–1401 (2016)

    Article  Google Scholar 

  23. Li, Y., Luo, H., Yu, M., Jiang, G., Cong, H.: Fabric defect detection algorithm using RDPSO-based optimal Gabor filter. J. Text. Inst. 110, 487–495 (2019)

    Article  Google Scholar 

  24. Rajabioun, R.: Cuckoo optimization algorithm. Appl. Softw. Comput. 11, 5508–5518 (2011)

    Article  Google Scholar 

  25. Lavielle, M.: Detection of multiple changes in a sequence of dependent variables. Stoch. Process. Appl. 83, 79–102 (1999)

    Article  MathSciNet  Google Scholar 

  26. Kumar, A., Pang, G.: Fabric defect segmentation using multichannel blob detectors. Opt. Eng. 39, 3176–3190 (2000)

    Article  Google Scholar 

  27. Bodnarova, A., Bennamoun, M., Latham, S.: Optimal Gabor filters for textile flaw detection. Pattern Recognit. 35, 2973–2991 (2002)

    Article  Google Scholar 

  28. TILDA. Textile Texture-Database. University of Freiburg, Germany.http://lmb.informatik.unifreiburg.de/resources/datasets/tilda.en.html

  29. Fabric Stain Dataset. University of Moratuwa, Sri Lanka. https://www.kaggle.com/priemshpathirana/fabric-stain-dataset

  30. Mak, K.L., Peng, P.: An automated inspection system for textile fabrics based on Gabor filters. Robot Comput. Integr. Manuf. 24, 359–369 (2008)

    Article  Google Scholar 

  31. Divyadevi, R.,Kumar, B. V.: Survey of automated fabric inspection in textile industries. In: 2019 International Conference on Computer Communication and Informatics (ICCCI), pp 1–4 (2019)

  32. Qu, T., Zou, L., Zhang, Q., Chen, X., Fan, C.: Defect detection on the fabric with complex texture via dual-scale over-complete dictionary. J. Text I(107), 743–756 (2016)

    Google Scholar 

  33. Chetverikov, D., Hanbury, A.: Finding defects in texture using regularity and local orientation. Pattern Recognit. 35, 2165–2180 (2002)

    Article  Google Scholar 

  34. Sezer, O.G., Erçil, A., Ertuzun, A.: Using perceptual relation of regularity and anisotropy in the texture with independent component model for defect detection. Pattern Recognit. 40, 121–133 (2007)

    Article  Google Scholar 

  35. Heidari, N., Azmi, R.,Pishgoo, B.: Fabric textile defect detection, by selecting a suitable subset of wavelet coefficients, through genetic algorithm. Int. J. Image Process. 5, 25 (2011)

    Article  Google Scholar 

  36. Basturk, A., Ketencioglu, H., Yugnak, Z.,Yuksel, M. E.: Inspection of defects in fabrics using Gabor wavelets and principle component analysis. In: 9th International Symposium on Signal Processing and Its Applications (ISSPA), pp. 1–4 (2007)

  37. Tolba, A.: Fast defect detection in homogeneous flat surface products. Expert Syst. Appl. 38, 12339–12347 (2011)

    Article  Google Scholar 

  38. Tolba, A.: Neighborhood-preserving cross correlation for automated visual inspection of fine-structured textile fabrics. Text. Res. J. p. 0040517511413322 (2011).

  39. Tolba, A., Atwan, A., Amanneddine, N., Mutawa, A., Khan, H.: Defect detection in flat surface products using log-Gabor filters. Int. J. Hybrid Intell. Syst. 7, 187–201 (2010)

    Article  Google Scholar 

  40. Jing, J.F., Ma, H., Zhang, H.H.: Automatic fabric defect detection using a deep convolutional neural network. Color. Technol. 135, 213–223 (2019)

    Article  Google Scholar 

  41. Wei, W., Deng, D., Zeng, L.,Zhang, C.: Real-time implementation of fabric defect detection based on variational automatic encoder with structure similarity. J.Real-Time Image Process., 1–17 (2020).

Download references

Acknowledgement

The authors would like to thank the Workgroup on Texture Analysis of the DFG (Deutsche Forschungsgemeinschaft Germany) for providing the TILDA Textile Texture Database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farahnaz Mohanna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boluki, M., Mohanna, F. Inspection of textile fabrics based on the optimal Gabor filter. SIViP 15, 1617–1625 (2021). https://doi.org/10.1007/s11760-021-01897-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-021-01897-3

Keywords

Navigation