Skip to main content
Log in

Low-dose CT image denoising using deep convolutional neural networks with extended receptive fields

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

How to reduce radiation dose while preserving the image quality as when using standard dose is an important topic in the computed tomography (CT) imaging domain because the quality of low-dose CT (LDCT) images is often strongly affected by noise and artifacts. Recently, there has been considerable interest in using deep learning as a post-processing step to improve the quality of reconstructed LDCT images. This paper provides, first, an overview of learning-based LDCT image denoising methods from patch-based early learning methods to state-of-the-art CNN-based ones and, then, a novel CNN-based method is presented. In the proposed method, preprocessing and post-processing techniques are integrated into a dilated convolutional neural network to extend receptive fields. Hence, large distance pixels in input images will participate in enriching feature maps of the learned model, leading to effective denoising. Experimental results showed that the proposed method is light, while its denoising effectiveness is competitive with well-known CNN-based models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hounsfield, G.N.: Computerized transverse axial scanning (tomography): part 1. Description of system. Br. J. Radiol. 46(552), 1016–1022 (1973)

    Article  Google Scholar 

  2. Wang, J. et al.: Sinogram noise reduction for low-dose CT by statistics-based nonlinear filters. In: Medical Imaging 2005: Image Processing, vol. 5747, pp. 2058–2066 (2005)

  3. Hara, A.K., et al.: Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. Am. J. Roentgenol. 193(3), 764–771 (2009)

    Article  Google Scholar 

  4. Beister, M., et al.: Iterative reconstruction methods in X-ray CT. Physica Med. 28(2), 94–108 (2012)

    Article  Google Scholar 

  5. Stiller, W.: Basics of iterative reconstruction methods in computed tomography: a vendor-independent overview. Eur. J. Radiol. 109, 147–154 (2018)

    Article  Google Scholar 

  6. Buades, A., et al.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)

    Article  MathSciNet  Google Scholar 

  7. Li, Z., et al.: Adaptive nonlocal means filtering based on local noise level for CT denoising. Med. Phys. 41(1), 011908 (2014)

    Article  Google Scholar 

  8. Green, M. et al.: Efficient low-dose CT denoising by locally-consistent non-local means (LC-NLM). In: Proceedings MICCAI 2016, Part III, pp. 423–431 (2016)

  9. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(2), 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  10. Chen, Y., et al.: Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing. Phys. Med. Biol. 58(16), 5803 (2013)

    Article  Google Scholar 

  11. Chen, Y., et al.: Artifact suppressed dictionary learning for low-dose CT image processing. IEEE Trans. Med. Imag. 33(12), 2271–2292 (2014)

    Article  Google Scholar 

  12. Pizurica, A., et al.: A versatile wavelet domain noise filtration technique for medical imaging. IEEE Trans. Med. Imag. 22, 323–331 (2003)

    Article  Google Scholar 

  13. Portilla, J., et al.: Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image Process. 12(11), 1338–1351 (2003)

    Article  MathSciNet  Google Scholar 

  14. Dabov, K., et al.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  15. Lu, H., et al.: Noise properties of low-dose CT projections and noise treatment by scale transformations. Nuclear Sci. Symp. 3, 1662–1666 (2001)

    Google Scholar 

  16. Trinh, D.-H., et al.: Novel example-based method for super-resolution and denoising of medical images. IEEE Trans. Image Process. 23(4), 1882–1895 (2014)

    Article  MathSciNet  Google Scholar 

  17. Chen, H., et al.: Low-dose CT with a residual encoder–decoder convolutional neural network. IEEE Trans. Med. Imag. 36(12), 2524–2535 (2017)

    Article  Google Scholar 

  18. Yang, Q., et al.: Low dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans. Med. Imag. 37(6), 1348–1357 (2018)

    Article  Google Scholar 

  19. Yi, X., Babyn, P.: Sharpness-aware low-dose CT denoising using conditional generative adversarial network. J. Dig. Imag. 31(5), 655–669 (2018)

    Article  Google Scholar 

  20. You, C., et al.: Structurally-sensitive multi-scale deep neural network for low-dose CT denoising. IEEE Access 6, 41839–41855 (2018)

    Article  Google Scholar 

  21. Trung, N.T. et al.: Robust denoising of low-dose CT images using convolutional neural networks. In: Proceedings of NICS, pp. 506–511 (2019)

  22. Trinh, D.H., et al.: Medical image denoising using kernel ridge regression. In: Proceedings of ICIP, pp. 1597–1600 (2011)

  23. Ma, J., et al.: Low-dose computed tomography image restoration using previous normal-dose scan. Med. Phys. 38(10), 5713–5731 (2011)

    Article  Google Scholar 

  24. Trinh, D.H., et al.: An optimal weight method for CT image denoising. J. Electron. Sci. Technol. 10(2) (2012)

  25. Araujo, A., et al.: Computing receptive fields of convolutional neural networks. Distill 4(11), e21 (2019)

    Article  Google Scholar 

  26. Zhang, K., et al.: FFDnet: toward a fast and flexible solution for CNN-based image denoising. IEEE Trans. Image Process. 27(9), 4608–4622 (2018)

    Article  MathSciNet  Google Scholar 

  27. Zhang, Q., et al.: Learning a dilated residual network for SAR image despeckling. Rem. Sens. 10(2), 196 (2018)

    Article  Google Scholar 

  28. Kervrann, C., Boulanger, J.: Optimal spatial adaptation for patchbased image denoising. IEEE Trans. Image Process. 15, 2866–2878 (2006)

    Article  Google Scholar 

  29. Nguyen, T.-T., et al., An efficient example-based method for CT image denoising based on frequency decomposition and sparse representation. In: Proceedings of ATC, pp 293–296 (2016)

  30. Trung, N.T., et al.: Low-dose CT image denoising using image decomposition and sparse representation. REV J. Electron. Commun. 9(3–4), 78–88 (2020)

    Google Scholar 

  31. Zoran,D., Weiss,Y.: From learning models of natural image patches to whole image restoration. In: Proceedings of ICCV, pp. 479–486 (2011)

  32. Burger, H.C., et al.: Learning how to combine internal and external denoising methods. Proc. GCPR 8142, 121–130 (2013)

    Google Scholar 

  33. Luo, E.: et al., Adaptive image denoising by targeted databases. IEEE Trans. Image Process. 24(7), 2167–2181 (2015)

  34. Jain, V., Seung, H.S.: Natural image denoising with convolutional networks. In: NIPS, pp. 769–776 (2008)

  35. Li, D.: Support vector regression based image denoising. Image Vis. Comput. 27(6), 623–627 (2009)

    Article  Google Scholar 

  36. Burger, H.C., et al. Image denoising: can plain neural networks compete with BM3D? In: Proceedings of CVPR, pp. 2392–2399 (2012)

  37. Trinh, D.H., et al.: An effective example-based denoising method for CT images using Markov random field. In: Proceedings of ATC, pp. 355–359 (2014)

  38. Zhang, K., et al.: Beyond a gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  Google Scholar 

  39. Yue, Z. et al. (2019) Variational denoising network: toward blind noise modeling and removal. In: Proceedings of NeurIPS, pp. 1688–1699 (2019)

  40. Anwar, S., Barnes, N.: Real image denoising with feature attention. In: Proceedings of ICCV, pp. 3155–3164 (2019)

  41. NIH, AAPM, and Mayo Clinic, Low dose CT grand challenge (2016)

  42. Leuschner, J., et al.: LoDoPaB-CT, a benchmark dataset for low-dose computed tomography reconstruction. Sci. Data 8(109), 1–12 (2021)

    Google Scholar 

  43. Mao, X.-J. et al.: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. arXiv:1603.09056 (2016)

  44. Ronneberger, O., et al.: U-net: Convolutional networks for biomedical image segmentation. In: Proceedings of MICCAI, vol. 9351, pp. 234–241 (2015)

  45. Li, M., et al.: SACNN: self-attention convolutional neural network for low-dose CT denoising with self-supervised perceptual loss network. IEEE Trans. Med. Imag. 39(7), 2289–2301 (2020)

    Article  Google Scholar 

  46. Shan, H., et al.: Correction for 3D convolutional encoder-decoder network for low-dose CT via transfer learning from a 2D trained network. IEEE Trans. Med. Imag. 37(12), 2750 (2018)

    Article  Google Scholar 

  47. Goodfellow, I.J. et al.: Generative adversarial networks. arXiv preprint arXiv:1406.2661 (2014)

  48. Arjovsky, M. et al.: Wasserstein GAN. arXiv:1701.07875 (2017)

  49. Du, W., et al.: Visual attention network for low-dose CT. IEEE Sig. Process. Let. 26(8), 1152–1156 (2019)

    Article  Google Scholar 

  50. Dalmaz, O. et al.: ResViT: Residual vision transformers for multi-modal medical image synthesis. arXiv preprint arXiv:2106.16031 (2021)

  51. Korkmaz Y. et al.: Unsupervised MRI reconstruction via zero-shot learned adversarial transformers. arXiv preprint arXiv:2105.08059 (2021)

  52. Chen, J. et al.: Transunet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  53. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In: Proceedings of ICLR (2016)

  54. Simonyan, K. , Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Proceedings of ICLR (2015)

  55. Kang, D. et al.: Image denoising of low-radiation dose coronary CT angiography by an adaptive block-matching 3D algorithm. In: Medical Imaging 2013: Image Process, 86692G (2013)

  56. Wang, Z., et al.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  57. Zhang, L., et al.: FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011)

    Article  MathSciNet  Google Scholar 

  58. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 (2014)

  59. Wang, J., et al.: Penalized weighted least-squares approach to Sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography. IEEE Trans. Med. Imag. 25(10), 1272–1283 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dinh-Hoan Trinh or Nguyen Linh Trung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trung, N.T., Trinh, DH., Trung, N.L. et al. Low-dose CT image denoising using deep convolutional neural networks with extended receptive fields. SIViP 16, 1963–1971 (2022). https://doi.org/10.1007/s11760-022-02157-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-022-02157-8

Keywords

Navigation