Skip to main content
Log in

Preparation, characterization and catalytic performance of Cu nanowire catalyst for CO2 hydrogenation

CO2 加氢Cu 纳米线催化剂的制备、表征和催化性能

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Pure Cu nanowires as catalyst were prepared by electrochemical deposition and were used in CO2 hydrogenation to methanol. The active sites of the Cu based catalyst were discussed. The performance and structural development of the catalyst were observed during CO2 hydrogenation. A mechanism for the deactivation of the catalyst was discussed. The key factors that affect the deactivation of the catalyst were found. Cu nanowire sample was characterized by SEM, EDS, XRD, and BET. The results show that Cu nanowires have very high sintering resistance and catalytic stability. This helps to develop high performance catalysts. The changes in the grain size, SEM morphology and catalytic properties of the sample during CO2 hydrogenation show that the migration of the Cu atoms on the surface of the Cu nanowires can occur. Continuous migration of Cu atoms and sintering of Cu grains can lead to flow blockage in gas channels. The gas channel flow blockage or the sintering of Cu grains can lead to deactivation of the catalyst. However, the shape of catalytic performance curve indicates that the main reason for the deactivation of the catalyst is the gas channel flow blockage.

摘要

采用电化学沉积方法制备纯Cu 纳米线催化剂,并首次将其用于CO2 加氢合成甲醇反应,探讨 Cu 基催化剂的活性位,这有助于催化剂活性位的研究。观察CO2 加氢过程中催化剂的性能和结构变 化,探讨催化剂的失活机理,找出影响催化剂失活的关键因素,这有利于提高催化剂的应用性能。通 过SEM、EDS、XRD 和BET 等检测手段对Cu 纳米线样品进行表征。结果发现,Cu 纳米线具有非常 高的抗烧结性能和催化稳定性,这有助于研制高性能催化剂CO2 加氢过程中样品的晶粒尺寸、SEM 形貌和催化性能的变化情况表明,Cu 纳米线表面的Cu 原子可能发生迁移。Cu 原子不断的迁移和Cu 晶粒不断的烧结可能导致气体通道堵塞。气体通道堵塞或Cu 晶粒烧结均可能导致催化剂失活。然而, 催化性能曲线的形状表明,该催化剂失活的主要原因是气体通道堵塞。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. REN Hong, XU Cheng-hua, ZHAO Hao-yang, WANG Ya-xue, LIU Jie, LIU Jian-ying. Methanol synthesis from CO2 hydrogenation over Cu/γ-Al2O3 catalysts modified by ZnO, ZrO2 and MgO [J]. Journal of Industrial and Engineering Chemistry, 2015, 28: 261–267.

    Article  Google Scholar 

  2. LI Cong-ming, YUAN Xing-dong, FUJIMOTO K. Development of highly stable catalyst for methanol synthesis from carbon dioxide [J]. Applied Catalysis A: General, 2014, 469: 306–311.

    Article  Google Scholar 

  3. GAO Peng, ZHONG Liang-shu, ZHANG Li-na, WANG Hui, ZHAO Ning, WEI Wei, SUN Yu-han. Yttrium oxide modified Cu/ZnO/Al2O3 catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol [J]. Catalysis Science & Technology, 2015, 5(9): 4365–4377.

    Article  Google Scholar 

  4. LI Zhi-xiong, NA wei, WANG Hua, GAO Wen-gui. Direct syntheses of Cu-Zn-Zr/SBA-15 mesoporous catalysts for CO2 hydrogenation to methanol [J]. Chemical Journal of Chinese Universities, 2014, 35(12): 2616–2623. (in Chinese)

    Google Scholar 

  5. NATESAKHAWAT S, LEKSE J W, BALTRUS J P, OHODNICKI P R Jr, HOWARD B H, DENG Xing-yi, MATRANGA C. Active sites and structure–activity relationships of copper-based catalysts for carbon dioxide hydrogenation to methanol [J]. ACS Catalysis, 2012, 2(8): 1667–1676.

    Article  Google Scholar 

  6. BALTES C, VUKOJEVIĆ S, SCHÜTH F. Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis [J]. Journal of Catalysis, 2008, 258(2): 334–344.

    Article  Google Scholar 

  7. SAITO M, MURATA K. Development of high performance Cu/ZnO-based catalysts for methanol synthesis and the water-gas shift reaction [J]. Catalysis Surveys from Asia, 2004, 8(4): 285–294.

    Article  Google Scholar 

  8. TOYIR J, MILOUA R, ELKADRI N E, NAWDALI M, TOUFIK H, MILOUA F, SAITO M. Sustainable process for the production of methanol from CO2 and H2 using Cu/ZnO-based multicomponent catalyst [J]. Physics Procedia, 2009, 2(3): 1075–1079.

    Article  Google Scholar 

  9. AHOUARI H, SOUALAH A, VALANT A L, PINARD L, MAGNOUX P, POUILLOUX Y. Methanol synthesis from CO2 hydrogenation over copper based catalysts [J]. Reaction Kinetics Mechanisms and Catalysis, 2013, 110(1): 131–145.

    Article  Google Scholar 

  10. GAO Peng, LI Feng, ZHAO Ning, WANG Hui, WEI Wei, SUN Yu-han. Preparation of Cu/Zn/Al/(Zr)/(Y) catalysts from hydrotalcite-like precursors and their catalytic performance for the hydrogenation of CO2 to methanol [J]. Acta Physico-Chimica Sinica, 2014, 30(6): 1155–1162. (in Chinese)

    Google Scholar 

  11. ARENA F, BARBERA K, ITALIANO G, BONURA G, SPADARO L, FRUSTERI F. Synthesis, characterization and activity pattern of Cu–ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol [J]. Journal of Catalysis, 2007, 249: 185–194.

    Article  Google Scholar 

  12. TWIGG M V, SPENCER M S. Deactivation of supported copper metal catalysts for hydrogenation reactions [J]. Applied Catalysis A: General, 2001, 212: 161–174.

    Article  Google Scholar 

  13. KANG S H, BAE J W, PRASAD P S S, OH J H, JUN K W, SONG S L, MIN K S. Influence of Ga addition on the methanol synthesis activity of Cu/ZnO catalyst in the presence and absence of alumina [J]. Journal of Industrial and Engineering Chemistry, 2009, 15(5): 665–669.

    Article  Google Scholar 

  14. WANG Shou-jian. Comprehensive utilization technology of natural gas [M]. Beijing: Chemical Industry Press, 2003: 105–106. (in Chinese)

    Google Scholar 

  15. HUANG Zhong-tao. Industrial catalyst handbook [M]. Beijing: Chemical Industry Press, 2004: 660–663. (in Chinese)

    Google Scholar 

  16. FUJITANI T, NAKAMURA I, UCHIJIMA T, NAKAMURA J. The kinetics and mechanism of methanol synthesis by hydrogenation of CO2 over a Zn-deposited Cu( 111 ) surface [J]. Surface Science, 1997, 383: 285–298.

    Article  Google Scholar 

  17. CHOI Y, FUTAGAMI K, FUJITANI T, NAKAMURA J. The role of ZnO in Cu/ZnO methanol synthesis catalysts— morphology effect or active site model? [J]. Applied Catalysis A: General, 2001, 208(1): 163–167.

    Article  Google Scholar 

  18. BEHRENS M, STUDT F, KASATKIN I, KÜHL S, HÄVECKER M, ABILD-PEDERSEN F, ZANDER S, GIRGSDIES F, KURR P, KNIEP B L, TOVAR M, FISCHER R W, NØRSKOV J K, SCHLÖGL R. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts [J]. Science, 2012, 336(6083): 893–897.

    Article  Google Scholar 

  19. QIAN Bo-zhang. Hope of CO2 for efficient methanol synthesis [N]. China Chemical Industry News, 2014–08-05(002). (in Chinese)

    Google Scholar 

  20. LI Zhong, FAN Hui, ZHANG Hua-yan, LIU Yan. Influence of microwave irradiation on precursor microstructure and catalytic performance of Cu/ZnO/Al2O3 for slurry methanol synthesis [J]. Chinese Journal of Catalysis, 2010, 31(4): 471–478. (in Chinese)

    Article  Google Scholar 

  21. LI Zhong, LIU Yan, HE Zhong, FAN Hui, ZHENG Hua-yan. Effects of Cu/Zn on the structure and activity of CuO/ZnO/Al2O3 catalysts prepared under microwave irradiation in aging process [J]. Acta Chimica Sinica, 2011, 69(5): 570–576. (in Chinese)

    Google Scholar 

  22. LIN Sheng-da, TANG Hao-dong, LU Zhao-bo, LIU Cai-lai, CEN Ya-qing, LIU Hua-zhang. Influence of precipitation methods on precursors and properties of Cu-based catalyst for methanol synthesis [J]. Chinese Journal of Catalysis, 2010, 31(10): 1257–1262. (in Chinese)

    Google Scholar 

  23. WANG Dong-sheng, TAN Yi-sheng, HAN Yi-zhuo, TSUBAKI N. Effect of CO2 on stability of Cu-based catalyst for dimethyl ether synthesis in slurry phase [J]. Chinese Journal of Catalysis, 2008, 29(1): 63–68. (in Chinese)

    Google Scholar 

  24. ARENA F, ITALIANO G, BARBERA K, BONURA G, SPADARO L, FRUSTERI F. Basic evidences for methanol synthesis catalyst design [J]. Catalysis Today, 2009, 143: 80–85.

    Article  Google Scholar 

  25. LEI Hong, NIE Ren-feng, WU Guo-qiang, HOU Zhao-yin. Hydrogenation of CO2 to CH3OH over Cu/ZnO catalysts with different ZnO morphology [J]. Fuel, 2015, 154: 161–166.

    Article  Google Scholar 

  26. ERTL G, KNÖZINGER H, SCHÜTH F, WEITKAMP J. Handbook of heterogeneous catalysis [M]. 2nd ed. Weinheim: Wiley-VCH, 2008: 97–98.

    Book  Google Scholar 

  27. TOYIR J, SAITO M, YAMAUCHI I, LUO Sheng-cheng, WU Jin-gang, TAKAHARA I, TAKEUCHI M. Development of high performance Raney Cu-based catalysts for methanol synthesis from CO2 and H2 [J]. Catalysis Today, 1998, 45(1): 245–250.

    Article  Google Scholar 

  28. CHU Wei. Catalyst engineering [M]. Chengdu: Sichuan University Press, 2006: 107. (in Chinese)

    Google Scholar 

  29. ZHANG Yun-liang, LI Yu-long. Manufacture and aapplication of industrial catalysts [M]. Beijing: Chemical Industry Press, 2008: 20. (in Chinese)

    Google Scholar 

  30. YAN Xin, SHU Jun-jie, KONG Yu-hua. Novel integrated methanol process and energy saving [M]. Beijing: Chemical Industry Press, 2009: 294. (in Chinese)

    Google Scholar 

  31. NATESAKHAWAT S, OHODNICKI P R Jr, HOWARD B H, LEKSE J W, BALTRUS J P, MATRANGA C. Adsorption and deactivation characteristics of Cu/ZnO-based catalysts for methanol synthesis from carbon dioxide [J]. Topics in Catalysis, 2013, 56(18): 1752–1763.

    Article  Google Scholar 

  32. AN Xin, REN Fei, LI Jin-lu, WANG Jin-fu. A highly active Cu/ZnO/Al2O3 nanofiber catalyst for methanol synthesis through CO2 and CO hydrogenation [J]. Chinese Journal of Catalysis, 2005, 26(9): 729–730.

    Google Scholar 

  33. AN Xin, LI Jin-lu, ZUO Yi-zan, ZHANG Qiang, WANG De-zheng, WANG Jin-fu. A Cu/Zn/Al/Zr fibrous catalyst that is an improved CO2 hydrogenation to methanol catalyst [J]. Catalysis Letters, 2007, 118(3): 264–269.

    Article  Google Scholar 

  34. WANG Guan-nan, CHEN Li-min, GUO Yuan-yuan, FU Ming-li, WU Jun-liang, HUANG Bi-chun, YE Dai-qi. Effect of chromium doping on the catalytic behavior of Cu/ZrO2/CNTs-NH2 for the synthesis of methanol from carbon dioxide hydrogenation [J]. Acta Physico-Chimica Sinica, 2014, 30(5): 923–931. (in Chinese)

    Google Scholar 

  35. RAZALI N A M, LEE K T, BHATIA S, MOHAMED A R. Heterogeneous catalysts for production of chemicals using carbon dioxide as raw material: A review [J]. Renewable and Sustainable Energy Reviews, 2012, (16): 4951–4964.

    Article  Google Scholar 

  36. SAMEI E, TAGHIZADEH M, BAHMANI M. Enhancement of stability and activity of Cu/ZnO/Al2O3 catalysts by colloidal silica and metal oxides additives for methanol synthesis from a CO2-rich feed [J]. Fuel Processing Technology, 2012, 96: 128–133.

    Article  Google Scholar 

  37. FICHTL M B, SCHLERETH D, JACOBSEN N, KASATKIN I, SCHUMANN J, BEHRENS M A, SCHLÖGL R, HINRICHSEN O. Kinetics of deactivation on Cu/ZnO/Al2O3 methanol synthesis catalysts [J]. Applied Catalysis A: General, 2015, 502: 262–270.

    Article  Google Scholar 

  38. QU Jin, ZHOU Xi-wen, XU Feng, GONG Xue-qing, TSANG S C E. Shape effect of Pd-promoted Ga2O3 nanocatalysts for methanol synthesis by CO2 hydrogenation [J]. The Journal of Physical Chemistry C, 2014, 118: 24452–24466.

    Article  Google Scholar 

  39. CHOWDHURY T, CASEY D P, ROHAN J F. Additive influence on Cu nanotube electrodeposition in anodised aluminium oxide templates [J]. Electrochemistry Communications, 2009, 11: 1203–1206.

    Article  Google Scholar 

  40. SONG Mao-ping, HE Zhan-hang. Basic chemistry experiment and technology [M]. Beijing: Chemical Industry Press, 2008: 559. (in Chinese)

    Google Scholar 

  41. KHALIL A, HASHAIKEH R, JOUIAD M. Synthesis and morphology analysis of electrospun copper nanowires [J]. Journal of Materials Science, 2014, 49(8): 3052–3065.

    Article  Google Scholar 

  42. BANSODE A, TIDONA B, von ROHR P R, URAKAWA A. Impact of K and Ba promoters on CO2 hydrogenation over Cu/Al2O3 catalysts at high pressure [J]. Catalysis Science & Technology, 2013, 3: 767–778.

    Article  Google Scholar 

  43. ZHAO Ya-fan, YANG Yong, MIMS C, PEDEN C H F, LI Jun, MEI Dong-hai. Insight into methanol synthesis from CO2 hydrogenation on Cu(111): Complex reaction network and the effects of H2O [J]. Journal of Catalysis, 2011, 281(2): 199–211.

    Article  Google Scholar 

  44. RASMUSSEN D B, JANSSENS T V W, TEMEL B, BLIGAARD T, HINNEMANN B, HELVEG S, SEHESTED J. The energies of formation and mobilities of Cu surface species on Cu and ZnO in methanol and water gas shift atmospheres studied by DFT [J]. Journal of Catalysis, 2012, 293: 205–214.

    Article  Google Scholar 

  45. KONDO S, ISHIKAWA T, ABE I. Adsorption science [M]. 2nd ed. LI Guo-xi, translation. Beijing: Chemical Industry, Press, 2006: 11. (in Chinese)

    Google Scholar 

  46. YU Qing-chun, DENG Yong, WANG Fei, FENG Yue-bin, YANG Bin, XU Bao-qiang, LIU Da-chun. Comparison of desulfurization kinetics of copper oxide sorbent [J]. Journal of Central South University, 2015, 22(08): 2902–2908.

    Article  Google Scholar 

  47. ZHANG Xiao-yan, WANG Ming-hua, WEBLEY P A, XIAO P, WANG Feng-luan, TAO Yu-zhong, ZHAI Yu-chun. Preparation and performance of catalyst for CO2 hydrogenation [J]. Journal of Materials and Metallurgy, 2016, 15(4): 272–276. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming-hua Wang  (王明华) or Yu-chun Zhai  (翟玉春).

Additional information

Foundation item: Project(51074205) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Xy., Wang, Mh., Chen, Zy. et al. Preparation, characterization and catalytic performance of Cu nanowire catalyst for CO2 hydrogenation. J. Cent. South Univ. 25, 691–700 (2018). https://doi.org/10.1007/s11771-018-3773-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3773-0

Keywords

关键词

Navigation