Skip to main content
Log in

Experimental investigation on synergetic prediction of granite rockburst using rock failure time and acoustic emission energy

基于岩石破裂时间与声发射能量的花岗岩岩爆协同预警试验研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The frequent occurrence of rockburst and the difficulty in predicting were considered in deep engineering and underground engineering. In this work, laboratory experiments on rockburst under true triaxial conditions were carried out with granite samples. Combined with the deformation characteristics of granite, acoustic emission (AE) technology was well applied in revealing the evolution law of micro-cracks in the process of rockburst. Based on the comprehensive analysis of acoustic emission parameters such as impact, ringing and energy, the phased characteristics of crack propagation and damage evolution in granite were obtained, which were consistent with the stages of rock deformation and failure. Subsequently, based on the critical point theory, the accelerated release characteristics of acoustic emission energy during rockburst were analyzed. Based on the damage theory, the damage evolution model of rock under different loading conditions was proposed, and the prediction interval of rock failure time was ascertained concurrently. Finally, regarding damage as an intermediate variable, the synergetic prediction model of rock failure time was constructed. The feasibility and validity of model were verified.

摘要

在深部岩土工程和地下工程中, 岩爆等动力灾害频繁发生且难以预测. 本文以花岗岩为试验对 象开展真三轴岩爆室内试验研究. 结合花岗岩变形特征, 采用声发射(AE)技术可以很好地揭示岩爆过 程中微裂纹的演化规律. 对撞击计数、振铃计数和能量等声发射特征参数进行综合分析, 获得了花岗 岩裂纹扩展和损伤演化的阶段性特征, 与岩石变形破坏过程具有较好的一致性. 随后, 基于临界点理 论, 分析了岩爆过程中声发射能量的加速释放现象. 基于损伤理论, 提出了不同加载条件下岩石的损 伤演化模型, 同时确定了岩石破裂时间的预测区间. 最后, 以损伤为中间变量, 构建了岩石破裂时间 协同预测模型, 并对模型的可行性和有效性进行了验证.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WANG Chun-lai. Evolution, monitoring and predicting models of rockburst [M]. Singapore: Springer Singapore, 2018. DOI: https://doi.org/10.1007/978-981-10-7548-3.

    Book  Google Scholar 

  2. COOK N G W. The failure of rock [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1965, 2(4): 389–403. DOI: https://doi.org/10.1016/0148-9062(65)90004-5.

    Article  Google Scholar 

  3. KIDYBIŃSKI A. Bursting liability indices of coal [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1981, 18(4): 295–304. DOI: https://doi.org/10.1016/0148-9062(81)91194-3.

    Article  Google Scholar 

  4. HOEK E, BROWN E T. Underground excavations in rock [M]. London: CRC Press, 1980.

    Google Scholar 

  5. HUANG R Q, WANG X N, CHAN L S. Triaxial unloading test of rocks and its implication for rock burst [J]. Bulletin of Engineering Geology and the Environment, 2001, 60(1): 37–41. DOI: https://doi.org/10.1007/s100640000082.

    Article  Google Scholar 

  6. HE M C, MIAO J L, FENG J L. Rock burst process of limestone and its acoustic emission characteristics under true-triaxial unloading conditions [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(2): 286–298. DOI: https://doi.org/10.1016/j.ijrmms.2009.09.003.

    Article  Google Scholar 

  7. CAI M, KAISER P K, TASAKA Y, et al. Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(5): 833–847. DOI: https://doi.org/10.1016/j.ijrmms.2004.02.001.

    Article  Google Scholar 

  8. YU Yang, CHEN Bing-rui, XU Chang-jie, et al. Analysis for microseismic energy of immediate rockbursts in deep tunnels with different excavation methods [J]. International Journal of Geomechanics, 2017, 17(5): 04016119. DOI: https://doi.org/10.1061/(asce)gm.1943-5622.0000805.

    Article  Google Scholar 

  9. WANG Chun-lai, CHEN Zeng, LIAO Ze-feng, et al. Experimental investigation on predicting precursory changes in entropy for dominant frequency of rockburst [J]. Journal of Central South University, 2020, 27(10): 2834–2848. DOI: https://doi.org/10.1007/s11771-021-4658-1.

    Article  Google Scholar 

  10. ZHOU X P, QIAN Q H, YANG H Q. Rock burst of deep circular tunnels surrounded by weakened rock mass with cracks [J]. Theoretical and Applied Fracture Mechanics, 2011, 56(2): 79–88. DOI: https://doi.org/10.1016/j.tafmec.2011.10.003.

    Article  Google Scholar 

  11. LOCKNER D. The role of acoustic emission in the study of rock fracture [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1993, 30(7): 883–899. DOI: https://doi.org/10.1016/0148-9062(93)90041-B.

    Article  Google Scholar 

  12. KHAZAEI C, HAZZARD J, CHALATURNYK R. Damage quantification of intact rocks using acoustic emission energies recorded during uniaxial compression test and discrete element modeling [J]. Computers and Geotechnics, 2015, 67: 94–102. DOI: https://doi.org/10.1016/j.compgeo.2015.02.012.

    Article  Google Scholar 

  13. MORADIAN Z, EINSTEIN H H, BALLIVY G. Detection of cracking levels in brittle rocks by parametric analysis of the acoustic emission signals [J]. Rock Mechanics and Rock Engineering, 2016, 49(3): 785–800. DOI: https://doi.org/10.1007/s00603-015-0775-1.

    Article  Google Scholar 

  14. WEN Zhi-jie, WANG Xiao, CHEN Lian-jun, et al. Size effect on acoustic emission characteristics of coal-rock damage evolution [J]. Advances in Materials Science and Engineering, 2017, 2017: 3472485. DOI: https://doi.org/10.1155/2017/3472485.

    Google Scholar 

  15. NIU Yong, ZHOU Xiao-ping, ZHOU Lun-shi. Fracture damage prediction in fissured red sandstone under uniaxial compression: Acoustic emission b-value analysis [J]. Fatigue & Fracture of Engineering Materials & Structures, 2020, 43(1): 175–190. DOI: https://doi.org/10.1111/ffe.13113.

    Article  Google Scholar 

  16. WANG Chun-lai, LU Hui, WANG Fu-li, et al. Characteristic point of the relatively quiet period for limestone failure under uniaxial compression [J]. Journal of Testing and Evaluation, 2015, 43(6): 20140187. DOI: https://doi.org/10.1520/jte20140187.

    Article  Google Scholar 

  17. SCHIAVI A, NICCOLINI G, TARIZZO P, et al. Waveforms and frequency spectra of elastic emissions due to macrofractures in solids [C]//Experimental and Applied Mechanics, 2011, 6: 613–621. DOI: https://doi.org/10.1007/978-1-4614-0222-0_73.

    Google Scholar 

  18. LACIDOGNA G, CARPINTERI A, MANUELLO A, et al. Acoustic and electromagnetic emissions as precursor phenomena in failure processes [J]. Strain, 2010, 47: 144–152. DOI: https://doi.org/10.1111/j.1475-1305.2010.00750.x.

    Article  Google Scholar 

  19. LU Cai-ping, DOU Lin-ming, LIU Hui, et al. Case study on microseismic effect of coal and gas outburst process [J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 53: 101–110. DOI: https://doi.org/10.1016/j.ijrmms.2012.05.009.

    Article  Google Scholar 

  20. GONG Feng-qiang, WANG Yun-liang, LUO Song. Rockburst proneness criteria for rock materials: Review and new insights [J]. Journal of Central South University, 2020, 27(10): 2793–2821. DOI: https://doi.org/10.1007/s11771-020-4511-y.

    Article  Google Scholar 

  21. WANG Chun-lai, BAO Tian-cai, LU Hui, et al. Variation regulation of the acoustic emission energy parameter during the failure process of granite under uniaxial compression [J]. Materials Testing, 2015, 57(9): 755–760. DOI: https://doi.org/10.3139/120.110776.

    Article  Google Scholar 

  22. ZHOU Xiao-ping, PENG Sen-lin, ZHANG Jian-zhi, et al. Predictive acoustical behavior of rockburst phenomena in Gaoligongshan tunnel, Dulong River highway, China [J]. Engineering Geology, 2018, 247: 117–128. DOI: https://doi.org/10.1016/j.enggeo.2018.10.023.

    Article  Google Scholar 

  23. BEN-ZION Y, LYAKHOVSKY V. Accelerated seismic release and related aspects of seismicity patterns on earthquake faults [J]. Pure and Applied Geophysics, 2002, 159(10): 2385–2412. DOI: https://doi.org/10.1007/s00024-002-8740-9.

    Article  Google Scholar 

  24. KYOYA T, KUSABUKA M, ICHIKAWA Y, et al. A damage mechanics analysis for underground excavation in jointed rock mass [C]// Proceedings of the International Symposium on Engineering in Complex Rock Formations. Amsterdam: Elsevier, 1988: 506–513. DOI: https://doi.org/10.1016/b978-0-08-035894-9.50071-8.

    Google Scholar 

  25. KYOYA T, CHIKAWA Y, KAWAMOTO T. Damage mechanics theory for discontinuous rock mass [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1987, 24(2): 52. DOI: https://doi.org/10.1016/0148-9062(87)91989-9.

    Google Scholar 

  26. KAWAMOTO T, ICHIKAWA Y, KYOYA T. Deformation and fracturing behaviour of discontinuous rock mass and damage mechanics theory [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1988, 12(1): 1–30. DOI: https://doi.org/10.1002/nag.1610120102.

    Article  MATH  Google Scholar 

  27. CHIKAWA Y, KYOYA T, KAWAMOTO T. Incremental theory of plasticity for rock [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1987, 24(2): 63. DOI: https://doi.org/10.1016/0148-9062(87)92079-1.

    Google Scholar 

  28. LI Xing-wei. Application of working face rock burst prediction of grey modeling cusp catastrophe analysis based on the acoustic emission [J]. Applied Mechanics and Materials, 2013, 373–375: 689–693. DOI: https://doi.org/10.4028/www.scientific.net/amm.373-375.689.

    Article  Google Scholar 

  29. HIRATA T. Omori’s Power Law aftershock sequences of microfracturing in rock fracture experiment [J]. Journal of Geophysical Research: Solid Earth, 1987, 92(B7): 6215–6221. DOI: https://doi.org/10.1029/JB092iB07p06215.

    Article  Google Scholar 

  30. YIN X C, MORA P, PENG K, et al. Load-unload response ratio and accelerating moment/energy release critical region scaling and earthquake prediction [J]. Pure and Applied Geophysics, 2002, 159(10): 2511–2523. DOI: https://doi.org/10.1007/s00024-002-8745-4.

    Article  Google Scholar 

  31. YIN Xiang-chu, LIU Yue, MORA P, et al. New progress in LURR-integrating with the dimensional method [J]. Pure and Applied Geophysics, 2013, 170(1–2): 229–236. DOI: https://doi.org/10.1007/s00024-012-0453-0.

    Article  Google Scholar 

  32. NISHIZAWA O, NORO H. A self-exciting process of acoustic emission occurrence in steady creep of granite under uniaxial stress [J]. Geophysical Research Letters, 1990, 17(10): 1521–1524. DOI: https://doi.org/10.1029/GL017i010p01521.

    Article  Google Scholar 

  33. ZHANG Jian-zhi, ZHOU Xiao-ping. Forecasting catastrophic rupture in brittle rocks using precursory AE time series [J]. Journal of Geophysical Research: Solid Earth, 2020, 125(8): e2019JB019276. DOI: https://doi.org/10.1029/2019JB019276.

    Google Scholar 

  34. WANG J C, SHIEH C F. Investigation of seismicity in central Taiwan using the accelerating seismic energy release model [J]. Terrestrial, Atmospheric and Oceanic Sciences, 2004, 15(1): 1. DOI: https://doi.org/10.3319/tao.2004.15.1.1(t).

    Article  Google Scholar 

  35. ZHANG Jian-zhi, ZHOU Xiao-ping, ZHOU Lun-shi, et al. Progressive failure of brittle rocks with non-isometric flaws: Insights from acousto-optic-mechanical (AOM) data [J]. Fatigue & Fracture of Engineering Materials & Structures, 2019, 42(8): 1787–1802. DOI: https://doi.org/10.1111/ffe.13019.

    Article  Google Scholar 

  36. ZHOU Xiao-ping, ZHANG Jian-zhi, QIAN Qi-hu, et al. Experimental investigation of progressive cracking processes in granite under uniaxial loading using digital imaging and AE techniques [J]. Journal of Structural Geology, 2019, 126: 129–145. DOI: https://doi.org/10.1016/j.jsg.2019.06.003.

    Article  Google Scholar 

  37. ZHOU Xiao-ping, ZHANG Jian-zhi, BERTO F. Fracture analysis in brittle sandstone by digital imaging and AE techniques: Role of flaw length ratio [J]. Journal of Materials in Civil Engineering, 2020, 32(5): 04020085. DOI: https://doi.org/10.1061/(asce)mt.1943-5533.0003151.

    Article  Google Scholar 

  38. NIU Yong, ZHOU Xiao-ping, BERTO F. Evaluation of fracture mode classification in flawed red sandstone under uniaxial compression [J]. Theoretical and Applied Fracture Mechanics, 2020, 107: 102528. DOI: https://doi.org/10.1016/j.tafmec.2020.102528.

    Article  Google Scholar 

  39. WANG Chun-lai, HOU Xiao-lin, LIU Yu-bo. Three-dimensional crack recognition by unsupervised machine learning [J]. Rock Mechanics and Rock Engineering, 2021, 54(2): 893–903. DOI: https://doi.org/10.1007/s00603-020-02287-w.

    Article  Google Scholar 

  40. BUFE C G, VARNES D J. Predictive modeling of the seismic cycle of the Greater San Francisco Bay Region [J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B6): 9871–9883. DOI: https://doi.org/10.1029/93JB00357.

    Article  Google Scholar 

  41. BOWMAN D D, OUILLON G, SAMMIS C G, et al. An observational test of the critical earthquake concept [J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B10): 24359–24372. DOI: https://doi.org/10.1029/98JB00792.

    Article  Google Scholar 

  42. VERE-JONES D. Statistical theories of crack propagation [J]. Mathematical Geology, 1977, 9(5): 455–481. DOI: https://doi.org/10.1007/bf02100959.

    Article  Google Scholar 

  43. JEAN L. How to use damage mechanics [J]. Nuclear Engineering and Design, 1984, 80(2): 233–245. DOI: https://doi.org/10.1016/0029-5493(84)90169-9.

    Article  Google Scholar 

  44. KRAJCINOVIC D, FONSEKA G U. The continuous damage theory of brittle materials, part 1: General theory [J]. Journal of Applied Mechanics, 1981, 48(4): 809–815. DOI: https://doi.org/10.1115/1.3157739.

    Article  MATH  Google Scholar 

  45. COLEMAN B D. Statistics and time dependence of mechanical breakdown in fibers [J]. Journal of Applied Physics, 1958, 29(6): 968–983. DOI: https://doi.org/10.1063/1.1723343.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun-lai Wang  (王春来) or Xiao-sheng Chuai  (揣筱升).

Additional information

Foundation item

Projects(52074294, 51574246, 51674008) supported by the National Natural Science Foundation of China; Projects (2017YFC0804201, 2017YFC0603000) supported by the National Key Research and Development Program of China; Project(2011QZ01) supported by the Fundamental Research Funds for the Central Universities, China

Contributors

WANG Chun-lai provided the idea of the study, conducted the experiments, wrote and revised the manuscript. CAO Cong wrote and revised the manuscript. LI Chang-feng analyzed the test data and modified the diagrams. CHUAI Xiao-sheng conducted the experiments. ZHAO Guang-ming and LU Hui offered some valuable suggestions for the contents of the manuscript.

Conflict of interest

WANG Chun-lai, CAO Cong, LI Chang-feng, CHUAI Xiao-sheng, ZHAO Guang-ming, and LU Hui declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Cl., Cao, C., Li, Cf. et al. Experimental investigation on synergetic prediction of granite rockburst using rock failure time and acoustic emission energy. J. Cent. South Univ. 29, 1262–1273 (2022). https://doi.org/10.1007/s11771-022-4971-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-4971-3

Key words

关键词

Navigation