Skip to main content
Log in

Preparing ZrH2 powder by magnesiothermic reduction in hydrogen

氢气辅助镁还原制备低氧氢化锆粉

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

High-purity zirconium metal has been of rising significance to the nuclear and energy industry. However, zirconium exhibits a strong chemical affinity to oxygen, which causes high-purity zirconium metal to be difficult to produce cost-effectively. Powder metallurgy for preparing zirconium metal can achieve near net forming of zirconium metal. Zirconium powder can be prepared by deoxidation of zirconium hydride powder. In this study, an efficient process was proposed to prepare high-purity ZrH2 using magnesium powder as reducing agent in hydrogen atmosphere. A specific investigation was conducted on the effect of hydrogen on the magnesiothermic reduction and deoxidation of ZrO2. As indicated from the results, the oxygen content of the reduced powder in Ar was over three times that in H2 atmosphere at 750 °C for 240 min. Moreover, a passive oxide layer, with a thickness of ~2.76 nm in H2 and of ~8.51 nm in argon, was formed on the edge of the reduced powder. In accordance with thermodynamic calculation, hydrogen was found to be capable of destabilizing Zr-O solution. An ultra-high pure zirconium hydride powder containing <350×10−6 oxygen and particle size of <100 µm was prepared as assisted by hydrogen.

摘要

锆金属在核工业及能源领域发挥着重要的作用, 但锆氧之间具有很强的亲和力, 使锆金属难以 经济有效地生产, 粉末冶金方法制备锆金属可以实现锆金属的近净成形制备, 锆粉可通过氢化锆粉脱 氧制备而成。本文提出了一种在氢气辅助下镁还原制备高纯ZrH2粉末的新工艺, 并分析了氢元素的强 化脱氧作用。在750 ℃、240 min 条件下Ar 和H2气氛中镁还原制备的ZrH2粉末氧含量分别为3.05 wt% 和1.03 wt%。对氢还原后的粉末进行脱氧, 获得平均粒度为89.01 μm、氧含量为0.0047 wt%的氢化锆 粉末。透射电镜测试结果表明, 与氩气气氛还原粉末相比, 氢气条件下的粉末表面钝化层厚度从8.51 nm减小到2.76 nm。热力学计算表明, H元素可以使Zr 金属发生相变, 降低Zr-O 固溶体的稳定性, 提 高镁的脱氧能力。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. PARK D J, KIM H G, JUNG Y I, et al. Behavior of an improved Zr fuel cladding with oxidation resistant coating under loss-of-coolant accident conditions [J]. Journal of Nuclear Materials, 2016, 482: 75–82. DOI: https://doi.org/10.1016/j.jnucmat.2016.10.021.

    Article  Google Scholar 

  2. MATTHEWS C, UNAL C, GALLOWAY J, et al. Fuel-cladding chemical interaction in U-Pu-Zr metallic fuels: A critical review [J]. Nuclear Technology, 2017, 198(3): 231–259. DOI: https://doi.org/10.1080/00295450.2017.1323535.

    Article  Google Scholar 

  3. PINT B A, TERRANI K A, BRADY M P, et al. High temperature oxidation of fuel cladding candidate materials in steam-hydrogen environments [J]. Journal of Nuclear Materials, 2013, 440(1–3): 420–427. DOI: https://doi.org/10.1016/j.jnucmat.2013.05.047.

    Article  Google Scholar 

  4. ASSIS S L, COSTA I. Electrochemical evaluation of Ti-13Nb-13Zr, Ti-6Al-4V and Ti-6Al-7Nb alloys for biomedical application by long-term immersion tests [J]. Materials and Corrosion, 2007, 58(5): 329–333. DOI: https://doi.org/10.1002/maco.200604027.

    Article  Google Scholar 

  5. XU L, XIAO Y, van SANDWIJK A, et al. Production of nuclear grade zirconium: A review [J]. Journal of Nuclear Materials, 2015, 466: 21–28. DOI: https://doi.org/10.1016/j.jnucmat.2015.07.010.

    Article  Google Scholar 

  6. JANG Y I, SOHN H S, JUNG J Y. Behavior of zirconium sponge formation in the kroll process [J]. Korean Journal of Metals and Materials, 2014, 52(4): 255–262. DOI: https://doi.org/10.3365/kjmm.2014.52.4.255.

    Article  Google Scholar 

  7. TAKEDA O, SUDA Ken-ta, LU Xin, et al. Zirconium metal production by electrorefining of Zr oxycarbide [J]. Journal of Sustainable Metallurgy, 2018, 4(4): 506–515. DOI: https://doi.org/10.1007/s40831-018-0199-8.

    Article  Google Scholar 

  8. DUNHAM W W, TOOMEY R D. RAM reactor provides continuous zirconium production [J]. JOM, 1959, 11(7): 438–440. DOI: https://doi.org/10.1007/BF03398171.

    Article  Google Scholar 

  9. STARRATT F W. Zirconium by sodium reduction [J]. JOM, 1959, 11(7): 441–443. DOI: https://doi.org/10.1007/BF03398172.

    Article  Google Scholar 

  10. MOHANDAS K, FRAY D. Ffc Cambridge process and removal of oxygen from metal-oxygen systems by molten salt electrolysis: An overview [J]. Transactions of the Indian Institute of Metals, 2004, 57(6): 579–592.

    Google Scholar 

  11. SEHRA J C, VIJAY P L, GUPTA C K. Preparation of zirconium and hafnium metal powders using fused salt electrolysis [J]. High Temperature Materials and Processes, 1995, 14(2): 115–120. DOI: https://doi.org/10.1515/htmp.1995.14.2.115.

    Article  Google Scholar 

  12. SUZDALTSEV A V, FILATOV A A, NIKOLAEV A Y, et al. Extraction of scandium and zirconium from their oxides during the electrolysis of oxide-fluoride melts [J]. Russian Metallurgy (Metally), 2018, 2018(2): 133–138. DOI: https://doi.org/10.1134/S0036029518020180.

    Article  Google Scholar 

  13. KROLL W J, ANDERSON C T, HOLMES H P, et al. Large-scale laboratory production of ductile zirconium [J]. Journal of the Electrochemical Society, 1948, 94(1): 1. DOI: https://doi.org/10.1149/1.2773819.

    Article  Google Scholar 

  14. PERSHIN P S, KATAEV A A, FILATOV A A, et al. Synthesis of Al-Zr alloys via ZrO2 aluminum-thermal reduction in KF-AlF3-based melts [J]. Metallurgical and Materials Transactions B, 2017, 48(4): 1962–1969. DOI: https://doi.org/10.1007/s11663-017-0976-y.

    Article  Google Scholar 

  15. ABDELKADER A M, EL-KASHIF E. Calciothermic reduction of zirconium oxide in molten CaCl2 [J]. ISIJ International, 2007, 47(1): 25–31. DOI: https://doi.org/10.2355/isijinternational.47.25.

    Article  Google Scholar 

  16. ESHED M, POL S, GEDANKEN A, et al. Zirconium nanoparticles prepared by the reduction of zirconium oxide using the RAPET method [J]. Beilstein Journal of Nanotechnology, 2011, 2: 198–203. DOI: https://doi.org/10.3762/bjnano.2.23.

    Article  Google Scholar 

  17. PARK K T, NERSISYAN H H, CHUN B S, et al. Preparation of porous zirconium microspheres by magnesiothermic reduction and their microstructural characteristics [J]. Journal of Materials Research, 2011, 26(16): 2117–2122. DOI: https://doi.org/10.1557/jmr.2011.217.

    Article  Google Scholar 

  18. XIA Yang, ZHAO Jin-long, DONG Zhao-wang, et al. Two-step gradient reduction of zirconia for making high-purity zirconium powder [J]. JOM, 2020, 72(4): 1687–1693. DOI: https://doi.org/10.1007/s11837-019-03958-y.

    Article  Google Scholar 

  19. ABRIATA J P, GARCÉS J, VERSACI R. The O-Zr (oxygen-zirconium) system [J]. Bulletin of Alloy Phase Diagrams, 1986, 7(2): 116–124. DOI: https://doi.org/10.1007/BF02881546.

    Article  Google Scholar 

  20. ZHANG Ying, FANG Z Z, XIA Yang, et al. Hydrogen assisted magnesiothermic reduction of TiO2 [J]. Chemical Engineering Journal, 2017, 308: 299–310. DOI: https://doi.org/10.1016/j.cej.2016.09.066.

    Article  Google Scholar 

  21. DONG Zhao-wang, XIA Yang, GUO Xue-yi, et al. Direct reduction of upgraded titania slag by magnesium for making low-oxygen containing titanium alloy hydride powder [J]. Powder Technology, 2020, 368: 160–169. DOI: https://doi.org/10.1016/j.powtec.2020.04.050.

    Article  Google Scholar 

  22. XIA Yang, DONG Zhao-wang, GUO Xue-yi, et al. Towards a circular metal additive manufacturing through recycling of materials: A mini review [J]. Journal of Central South University, 2020, 27(4): 1134–1145. DOI: https://doi.org/10.1007/s11771-020-4354-6.

    Article  Google Scholar 

  23. GUO Xue-yi, DONG Zhao-wang, XIA Yang, et al. Preparation of low-oxygen-containing Ti-48Al-2Cr-2Nb alloy powder by direct reduction of oxides [J]. Transactions of Nonferrous Metals Society of China, 2022, 32(4): 1351–1361. DOI: https://doi.org/10.1016/S1003-6326(22)65858-8.

    Article  Google Scholar 

  24. ZUZEK E, ABRIATA J P, SAN-MARTIN A, et al. The H-Zr (hydrogen-zirconium) system [J]. Bulletin of Alloy Phase Diagrams, 1990, 11(4): 385–395. DOI: https://doi.org/10.1007/BF02843318.

    Article  Google Scholar 

  25. LIU Huan, LIAN Li-xian, LIU Ying. Vacuum activation assisted hydrogenation-dehydrogenation for preparing high-quality zirconium powder [J]. Materials and Manufacturing Processes, 2019, 34(6): 630–636. DOI: https://doi.org/10.1080/10426914.2019.1566610.

    Article  Google Scholar 

  26. SHINOHARA Y, ABE H, IWAI T, et al. In situ TEM observation of growth process of zirconium hydride in zircaloy-4 during hydrogen ion implantation [J]. Journal of Nuclear Science and Technology, 2009, 46(6): 564–571. DOI: https://doi.org/10.1080/18811248.2007.9711563.

    Article  Google Scholar 

  27. SUMAN S, KHAN M K, PATHAK M, et al. Hydrogen in zircaloy: Mechanism and its impacts [J]. International Journal of Hydrogen Energy, 2015, 40(17): 5976–5994. DOI: https://doi.org/10.1016/j.ijhydene.2015.03.049.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

DONG Zhao-wang: Data curation, writing-original draft, writing-review & editing; DUAN Liang-hong: Drawing; LIU Han-ning: Data curation; GUO Xue-yi: Supervision, validation, visualization; XIA Yang: Funding acquisition, investigation, methodology, project administration; All authors replied to reviewers’ comments and revised the final version.

Corresponding authors

Correspondence to Xue-yi Guo  (郭学益) or Yang Xia  (夏阳).

Additional information

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Foundation item: Project(52004342) supported by the National Natural Science Foundation of China; Project(150240015) supported by the Innovation-driven Project of Central South University, China; Project(2021JJ20065) supported by the Natural Science Fund for Outstanding Young Scholar of Hunan Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Zw., Duan, Lh., Liu, Hn. et al. Preparing ZrH2 powder by magnesiothermic reduction in hydrogen. J. Cent. South Univ. 30, 1512–1522 (2023). https://doi.org/10.1007/s11771-023-5288-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5288-6

Key words

关键词

Navigation