Skip to main content
Log in

Evaluating the impact of sulfamethoxazole on hydrogen production during dark anaerobic sludge fermentation

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

The impact of antibiotics on the environmental protection and sludge treatment fields has been widely studied. The recovery of hydrogen from waste activated sludge (WAS) has become an issue of great interest. Nevertheless, few studies have focused on the impact of antibiotics present in WAS on hydrogen production during dark anaerobic fermentation. To explore the mechanisms, sulfamethoxazole (SMX) was chosen as a representative antibiotic to evaluate how SMX influenced hydrogen production during dark anaerobic fermentation of WAS. The results demonstrated SMX promoted hydrogen production. With increasing additions of SMX from 0 to 500 mg/kg TSS, the cumulative hydrogen production elevated from 8.07 ± 0.37 to 11.89 ± 0.19 mL/g VSS. A modified Gompertz model further verified that both the maximum potential of hydrogen production (Pm) and the maximum rate of hydrogen production (Rm) were promoted. SMX did not affected sludge solubilization, but promoted hydrolysis and acidification processes to produce more hydrogen. Moreover, the methanogenesis process was inhibited so that hydrogen consumption was reduced. Microbial community analysis further demonstrated that the introduction of SMX improved the abundance of hydrolysis bacteria and hydrogen-volatile fatty acids (VFAs) producers. SMX synergistically influenced hydrolysis, acidification and acetogenesis to facilitate the hydrogen production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Budiman P M, Wu T Y (2018). Role of chemicals addition in affecting biohydrogen production through photofermentation. Energy Conversion and Management, 165: 509–527

    Article  CAS  Google Scholar 

  • Cai M, Liu J, Wei Y (2004). Enhanced biohydrogen production from sewage sludge with alkaline pretreatment. Environmental Science & Technology, 38(11): 3195–3202

    Article  CAS  Google Scholar 

  • Chen H, Zeng X, Zhou Y, Yang X, Lam S S, Wang D (2020). Influence of roxithromycin as antibiotic residue on volatile fatty acids recovery in anaerobic fermentation of waste activated sludge. Journal of Hazardous Materials, 394: 122570–122580

    Article  CAS  Google Scholar 

  • Gao Y, Zhao J, Qin C, Yuan Q, Zhu J, Sun Y, Lu C (2021). Evaluating the effect of fluoxetine on mesophilic anaerobic dark biohydrogen fermentation of excess sludge. Bioresource Technology, 336: 125320

    Article  CAS  Google Scholar 

  • Hahnke S, Langer T, Klocke M (2018). Proteiniborus indolifex sp. nov., isolated from a thermophilic industrial-scale biogas plant. International Journal of Systematic and Evolutionary Microbiology, 68(3): 824–828

    Article  CAS  Google Scholar 

  • Hu J, Zhao J, Wang D, Li X, Zhang D, Xu Q, Peng L, Yang Q, Zeng G (2018a). Effect of diclofenac on the production of volatile fatty acids from anaerobic fermentation of waste activated sludge. Bioresource Technology, 254: 7–15

    Article  CAS  Google Scholar 

  • Huang C, Tang Z, Xi B, Tan W, Guo W, Wu W, Ma C (2021). Environmental effects and risk control of antibiotic resistance genes in the organic solid waste aerobic composting system: a review. Frontiers of Environmental Science & Engineering, 15(6): 127

    Article  CAS  Google Scholar 

  • Izadi P, Schröder U (2022). What is the role of individual species within bidirectional electroactive microbial biofilms: A case study on Desulfarculus baarsii and Desulfurivibrio alkaliphilus. ChemElectroChem, 9(2): 202101116–202101125

    Article  Google Scholar 

  • Kristiansen R, Nguyen H T, Saunders A M, Nielsen J L, Wimmer R, Le V Q, McIlroy S J, Petrovski S, Seviour R J, Calteau A, Nielsen K L, Nielsen P H (2013). A metabolic model for members of the genus Tetrasphaera involved in enhanced biological phosphorus removal. ISME Journal, 7(3): 543–554

    Article  CAS  Google Scholar 

  • Li X, Sui K, Zhang J, Liu X, Xu Q, Wang D, Yang Q (2022). Revealing the mechanisms of rhamnolipid enhanced hydrogen production from dark fermentation of waste activated sludge. Science of the Total Environment, 806(Pt 1): 150347

    Article  CAS  Google Scholar 

  • Lu L, Xing D, Ren N (2012). Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge. Water Research, 46(7): 2425–2434

    Article  CAS  Google Scholar 

  • Oberoi A S, Jia Y, Zhang H, Khanal S K, Lu H (2019). Insights into the fate and removal of antibiotics in engineered biological treatment systems: a critical review. Environmental Science & Technology, 53(13): 7234–7264

    Article  CAS  Google Scholar 

  • Qi N, Hu X, Zhao X, Li L, Yang J, Zhao Y, Li X (2018). Fermentative hydrogen production with peanut shell as supplementary substrate: effects of initial substrate, pH and inoculation proportion. Renewable Energy, 127: 559–564

    Article  CAS  Google Scholar 

  • Schmidt T, McCabe B K, Harris P W, Lee S (2018). Effect of trace element addition and increasing organic loading rates on the anaerobic digestion of cattle slaughterhouse wastewater. Bioresource Technology, 264: 51–57

    Article  CAS  Google Scholar 

  • Tong C, Xiao D, Xie L, Yang J, Zhao R, Hao J, Huo Z, Zeng Z, Xiong W (2022). Swine manure facilitates the spread of antibiotic resistome including tigecycline-resistant eet(X) variants to farm workers and receiving environment. Science of the Total Environment, 808: 152157–152168

    Article  CAS  Google Scholar 

  • Wang B, Ji S Q, Tian X X, Qu L Y, Li F L (2015). Brassicibacter thermophilus sp. nov., a thermophilic bacterium isolated from coastal sediment. International Journal of Systematic and Evolutionary Microbiology, 65(9): 2870–2874

    Article  CAS  Google Scholar 

  • Wang D, Duan Y, Yang Q, Liu Y, Ni B J, Wang Q, Zeng G, Li X, Yuan Z (2018a). Free ammonia enhances dark fermentative hydrogen production from waste activated sludge. Water Research, 133: 272–281

    Article  CAS  Google Scholar 

  • Wang D, Liu B, Liu X, Xu Q, Yang Q, Liu Y, Zeng G, Li X, Ni B J (2018b). How does free ammonia-based sludge pretreatment improve methane production from anaerobic digestion of waste activated sludge. Chemosphere, 206: 491–501

    Article  CAS  Google Scholar 

  • Wang D, Shuai K, Xu Q, Liu X, Li Y, Liu Y, Wang Q, Li X, Zeng G, Yang Q (2018c). Enhanced short-chain fatty acids production from waste activated sludge by combining calcium peroxide with free ammonia pretreatment. Bioresource Technology, 262: 114–123

    Article  CAS  Google Scholar 

  • Wang G, Jin Z, Wang X, George T S, Feng G, Zhang L (2022a). Simulated root exudates stimulate the abundance of Saccharimonadales to improve the alkaline phosphatase activity in maize rhizosphere. Applied Soil Ecology, 170: 104274–104284

    Article  Google Scholar 

  • Wang H, Guo W, Yin R, Du J, Wu Q, Luo H, Liu B, Sseguya F, Ren N (2019a). Biochar-induced Fe(III) reduction for persulfate activation in sulfamethoxazole degradation: insight into the electron transfer, radical oxidation and degradation pathways. Chemical Engineering Journal, 362: 561–569

    Article  CAS  Google Scholar 

  • Wang L, Yang C, Thangavel S, Guo Z, Chen C, Wang A, Liu W (2021). Enhanced hydrogen production in microbial electrolysis through strategies of carbon recovery from alkaline/thermal treated sludge. Frontiers of Environmental Science & Engineering, 15(4): 56

    Article  CAS  Google Scholar 

  • Wang Y, Wang D, Chen F, Yang Q, Li Y, Li X, Zeng G (2019b). Effect of triclocarban on hydrogen production from dark fermentation of waste activated sludge. Bioresource Technology, 279: 307–316

    Article  CAS  Google Scholar 

  • Wang Y, Zheng K, Guo H, Tong Y, Zhu T, Liu Y (2022b). Unveiling the mechanisms of how vivianite affects anaerobic digestion of waste activated sludge. Bioresource Technology, 343: 126045

    Article  CAS  Google Scholar 

  • Wei Y, Zhou A, Duan Y, Liu Z, He Z, Zhang J, Liang B, Yue X (2022). Unraveling the behaviors of sulfonamide antibiotics on the production of short-chain fatty acids by anaerobic fermentation from waste activated sludge and the microbial ecological mechanism. Chemosphere, 296: 133903–133911

    Article  CAS  Google Scholar 

  • Wu S L, Luo G, Sun J, Wei W, Song L, Ni B J (2021). Medium chain fatty acids production from anaerobic fermentation of waste activated sludge. Journal of Cleaner Production, 279: 123482–123492

    Article  CAS  Google Scholar 

  • Wu Y, Wang D, Liu X, Xu Q, Chen Y, Yang Q, Li H, Ni B (2019). Effect of poly aluminum chloride on dark fermentative hydrogen accumulation from waste activated sludge. Water Research, 153: 217–228

    Article  CAS  Google Scholar 

  • Xie J, Duan X, Feng L, Yan Y, Wang F, Dong H, Jia R, Zhou Q (2019). Influence of sulfadiazine on anaerobic fermentation of waste activated sludge for volatile fatty acids production: Focusing on microbial responses. Chemosphere, 219: 305–312

    Article  CAS  Google Scholar 

  • Yan T, Yang Q, Feng R, Ren X, Zhao Y, Sun M, Yan L, Wei Q (2022). Highly effective visible-photocatalytic hydrogen evolution and simultaneous organic pollutant degradation over an urchin-like oxygen-doped MoS2/ZnIn2S4 composite. Frontiers of Environmental Science & Engineering, 16(10): 131

    Article  CAS  Google Scholar 

  • Yang G, Wang J (2021). Enhancing biohydrogen production from disintegrated sewage sludge by combined sodium citrate-thermal pretreatment. Journal of Cleaner Production, 312: 127756–127765

    Article  CAS  Google Scholar 

  • Yang L, Li K, Cui S, Kang Y, An L, Lei K (2019). Removal of microplastics in municipal sewage from China’s largest water reclamation plant. Water Research, 155: 175–181

    Article  CAS  Google Scholar 

  • Zeng S, Sun J, Chen Z, Xu Q, Wei W, Wang D, Ni B J (2021). The impact and fate of clarithromycin in anaerobic digestion of waste activated sludge for biogas production. Environmental Research, 195: 110792

    Article  CAS  Google Scholar 

  • Zhao J, Wang D, Liu Y, Ngo H H, Guo W, Yang Q, Li X (2018). Novel stepwise pH control strategy to improve short chain fatty acid production from sludge anaerobic fermentation. Bioresource Technology, 249: 431–438

    Article  CAS  Google Scholar 

  • Zhao Q, Guo W, Luo H, Xing C, Wang H, Liu B, Si Q, Li D, Sun L, Ren N (2022). Insights into removal of sulfonamides in anaerobic activated sludge system: Mechanisms, degradation pathways and stress responses. Journal of Hazardous Materials, 423(B): 127248–127261

    Article  CAS  Google Scholar 

  • Zhao Y, Chen Y, Zhang D, Zhu X (2010). Waste activated sludge fermentation for hydrogen production enhanced by anaerobic process improvement and acetobacteria inhibition: the role of fermentation pH. Environmental Science & Technology, 44(9): 3317–3323

    Article  CAS  Google Scholar 

  • Zhu T, Zhang Y, Bu G, Quan X, Liu Y (2016). Producing nitrite from anodic ammonia oxidation to accelerate anammox in a bioelectrochemical system with a given anode potential. Chemical Engineering Journal, 291: 184–191

    Article  CAS  Google Scholar 

  • Zhu T T, Cheng H Y, Yang L H, Su S G, Wang H C, Wang S S, Wang A J (2019). Coupled sulfur and iron(II) carbonate-driven autotrophic denitrification for significantly enhanced nitrate removal. Environmental Science & Technology, 53(3): 1545–1554

    Article  CAS  Google Scholar 

  • Zhu T T, Su Z X, Lai W X, Zhang Y B, Liu Y W (2021). Insights into the fate and removal of antibiotics and antibiotic resistance genes using biological wastewater treatment technology. Science of the Total Environment, 776: 145906–145922

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key R&D Program of China (No. 2018YFE0106400). Authors are grateful to the research collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiwen Liu.

Additional information

High Lights

• SMX promotes hydrogen production from dark anaerobic sludge fermentation.

• SMX significantly enhances the hydrolysis and acidification processes.

• SMX suppresses the methanogenesis process in order to reduce hydrogen consumption.

• SMX enhances the relative abundance of hydrogen-VFAs producers.

• SMX brings possible environmental risks due to the enrichment of ARGs.

CRediT authorship contribution statement

Tingting Zhu: Investigation, Methodology, Data curation, Writing-original draft, Writing-review & editing. Zhongxian Su: Investigation, Methodology, Data curation, Software. Wenxia Lai: Investigation, Methodology. Jiazeng Ding: Investigation, Formal analysis. Yufen Wang: Investigation, Methodology. Yingxin Zhao: Writing-review & editing, Funding acquisition. Yiwen Liu: Conceptualization, Resources, Writing-review & editing, Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, T., Su, Z., Lai, W. et al. Evaluating the impact of sulfamethoxazole on hydrogen production during dark anaerobic sludge fermentation. Front. Environ. Sci. Eng. 17, 7 (2023). https://doi.org/10.1007/s11783-023-1607-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-023-1607-2

Keywords

Navigation