Skip to main content
Log in

Abundance, Diversity and Functional Potentials of Planktonic Bacteria and Microeukaryotes in the Coral-Reef System of Xisha Islands, China

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Corals influence microorganisms within the surrounding seawater, yet the diversities and functions of seawater bacteria and microeukaryotes in coral-reef systems have not been well addressed. We collected 40 seawater samples in outer coral reef flats and semi-closed inner lagoons from the surface, middle and bottom layers in the pristine coral-reef system of Xisha Islands, South China Sea. We detected the abundance, composition and distribution of bacteria and microeukaryotes using flow cytometry, qPCR and high throughput sequencing techniques, and profiled the potential ecological roles based on the information of 16S and 18S rDNA sequencing. In terms of flow cytometry, Prochlorococcus dominated the autotrophs with cell abundance ranging from 5.8 × 102 to 5.44 × 103 cells mL−1 seawater. Based on qPCR, the 16S rDNA copies were much higher in coral reef flats than in lagoons (P=0.003). The bacterial communities held significantly lower diversity in bottom waters compared with surface and middle waters (P < 0.05), which were dominated by SAR11, Flavobacteriales, and Synechococcus. Alveolata represented most of the microeukaryotic communities with Dinophyceae and Syndiniales well represented in all samples. Neither bacterial nor microeukaryotic community exhibited distinct layer or niche pattern, however, Haptophyta and Picozoa decreased with depth and SAR 86, MAST-3 and Picozoa were enriched in lagoons (P <0.05). To adapt the nutrient-poor and organic matter-rich environment, bacterial nitrogen fixation and assimilatory/dissimilatory nitrate reduction were active in the system, and mixotrophy was the most important trophic strategy among microeukaryotes. The study highlighted the ecological adaptability of seawater microbes to the unique coral-reef environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ainsworth, T. D., Fordyce, A. J., and Camp, E. F., 2017. The other microeukaryotes of the coral reef microbiome. Trends in Microbiology, 25(12): 980–991.

    Article  Google Scholar 

  • Alldredge, A. L., Carlson, C. A., and Carpenter, R. C., 2013. Sources of organic carbon to coral reef flats. Oceanography, 26(3): 108–113.

    Article  Google Scholar 

  • Allers, E., Niesner, C., Wild, C., and Pernthaler, J., 2008. Microbes enriched in seawater after addition of coral mucus. Applied and Environmental Microbiology, 74(10): 3274–3278.

    Article  Google Scholar 

  • Bastian, M., Heymann, S., and Jacomy, M., 2009. Gephi: An open source software for exploring and manipulating networks. International AAAI Conference on Weblogs and Social Media. San Jose, California, 12pp.

  • Biller, S., Berube, P., Lindell, D., and Chisholm, S., 2014. Prochlorococcus: The structure and function of collective diversity. Nature Reviews Microbiology, 13: 13–27.

    Article  Google Scholar 

  • Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., et al., 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5): 335–336.

    Article  Google Scholar 

  • Cardini, U., Bednarz, V. N., Foster, R. A., and Wild, C., 2014. Benthic N2 fixation in coral reefs and the potential effects of human-induced environmental change. Ecology and Evolution, 4(9): 1706–1727.

    Article  Google Scholar 

  • Charpy, L., and Blanchot, J., 1996. Prochlorococcus contribution to phytoplankton biomass and production of Takapoto atoll (Tuamotu archipelago). Comptes Rendus de l’Academie des Sciences — Serie III, 319(2): 131–137.

    Google Scholar 

  • Charpy, L., and Charpy-Roubaud, C., 1991. Particulate organic matter fluxes in a Tuamotu atoll lagoon (French Polynesia). Marine Ecology Progress Series, 71: 53–63.

    Article  Google Scholar 

  • Charpy, L., Casareto, B. E., Langlade, M. J., and Suzuki, Y., 2012. Cyanobacteria in coral reef ecosystems: A review. Journal of Marine Sciences, 2012: 259571.

    Google Scholar 

  • Cleary, D. F. R., 2019. A comparison of microeukaryote communities inhabiting sponges and seawater in a Taiwanese coral reef system. Annals of Microbiology, 69(8): 861–866.

    Article  Google Scholar 

  • de Castro, A. P., Araújo, S. D., Araújo Jr., S. D., Reis, A. M. M., Moura, R. L., Francini-Filho, R. B., et al., 2010. Bacterial community associated with healthy and diseased reef coral Mussismilia hispida from eastern Brazil. Environmental Microbiology, 59(4): 658–667.

    Google Scholar 

  • Edgar, R. C., 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26(19): 2460–2461.

    Article  Google Scholar 

  • Edwards, K. F., 2019. Mixotrophy in nanoflagellates across environmental gradients in the ocean. Proceedings of the National Academy of Sciences, 116(13): 6211–6220.

    Article  Google Scholar 

  • Gaidos, E., Rusch, A., and Ilardo, M., 2011. Ribosomal tag pyrosequencing of DNA and RNA from benthic coral reef microbiota: Community spatial structure, rare members and nitrogen-cycling guilds. Environmental Microbiology, 13(5): 1138–1152.

    Article  Google Scholar 

  • Gignoux-Wolfsohn, S. A., and Vollmer, S. V., 2015. Identification of candidate coral pathogens on white band disease-infected staghorn coral. PLoS One, 10(8): e0134416.

    Article  Google Scholar 

  • Glasl, B., Bourne, D. G., Frade, P. R., Thomas, T., Schaffelke, B., and Webster, N. S., 2019. Microbial indicators of environmental perturbations in coral reef ecosystems. Microbiome, 7(1): 94.

    Article  Google Scholar 

  • Guillou, L., Viprey, M., Chambouvet, A., Welsh, R. M., Kirkham, A. R., Massana, R., et al., 2008. Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environmental Microbiololgy, 10(12): 3349–3365.

    Article  Google Scholar 

  • Haas, A. F., Nelson, C. E., Rohwer, F., Wegley-Kelly, L., Quistad, S. D., Carlson, C. A., et al., 2013. Influence of coral and algal exudates on microbially mediated reef metabolism. Peer J, 1: e108.

    Article  Google Scholar 

  • Hartmann, M., Grob, C., Tarran, G. A., Martin, A. P., and Burkill, P. H., 2012. Mixotrophic basis of Atlantic oligotrophic ecosystems. Proceedings of the National Academy of Sciences, 109(15): 5756–5760.

    Article  Google Scholar 

  • Haydon, T. D., Seymour, J. R., and Suggett, D. J., 2018. Soft corals are significant DMSP producers in tropical and temperate reefs. Marine Biology, 165(7): 109.

    Article  Google Scholar 

  • Hu, C. Q., Xu, J., Li, X. F., Shi, Z., and Li, R. H., 2021. Environmental regulations on bacterial abundance in the South China Sea inferred from regression models. The Science of the Total Environment, 774: 146315.

    Article  Google Scholar 

  • Jensen, S., Bourne, D. G., Hovland, M., and Murrell, J. C., 2012. High diversity of microplankton surrounds deep-water coral reef in the Norwegian Sea. FEMS Microbiology Ecology, 82(1): 75–89.

    Article  Google Scholar 

  • Jeong, H. J., Yoo, Y. D., Kim, J. S., Seong, K. A., Kang, N. S., and Kim, T. H., 2010. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Science Journal, 45(2): 65–91.

    Article  Google Scholar 

  • Jiao, N. Z., Yang, Y. H., Hong, N., Ma, Y., Harada, S., Koshikawa, H., et al., 2005. Dynamics of autotrophic picoplankton and heterotrophic bacteria in the East China Sea. Continental Shelf Research, 25(10): 1265–1279.

    Article  Google Scholar 

  • Kelly, L. W., Nelson, C. E., Haas, A. F., Naliboff, D. S., Calhoun, S., Carlson, C. A., et al., 2019. Diel population and functional synchrony of microbial communities on coral reefs. Nature Communications, 10: 1691.

    Article  Google Scholar 

  • Kelly, L. W., Williams, G. J., Barott, K. L., Carlson, C. A., Dinsdale, E. A., Edwards, R. A., et al., 2014. Local genomic adaptation of coral reef-associated microbiomes to gradients of natural variability and anthropogenic stressors. Proceedings of the National Academy of Sciences, 111(28): 10227–10232.

    Article  Google Scholar 

  • Langfelder, P., and Horvath, S., 2008. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 9: 559.

    Article  Google Scholar 

  • Langille, M. G., Zaneveld, J., Caporaso, J. G., McDonald, D., Knights, D., Reyes, J. A., et al., 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 31(9): 814–821.

    Article  Google Scholar 

  • Leles, S., Polimene, L., Bruggeman, J., Blackford, J., Ciavatta, S., Mitra, A., et al., 2018. Modelling mixotrophic functional diversity and implications for ecosystem function. Journal of Plankton Research, 40(6): 627–642.

    Article  Google Scholar 

  • Lema, K. A., Willis, B. L., and Bourne, D. G., 2012. Corals form characteristic associations with symbiotic nitrogen-fixing bacteria. Applied and Environmental Microbiology, 78(9): 3136.

    Article  Google Scholar 

  • Lesser, M. P., Mazel, C. H., Gorbunov, M. Y., and Falkowski, P. G., 2004. Discovery of symbiotic nitrogen-fixing cyanobacteria in corals. Science, 305(5686): 997.

    Article  Google Scholar 

  • Lesser, M. P., Stat, M., and Gates, R. D., 2013. The endosymbiotic dinoflagellates (Symbiodinium sp.) of corals are parasites and mutualists. Coral Reefs, 32(3): 603–611.

    Article  Google Scholar 

  • Liu, H. B., Chang, J., Tseng, C. M., Wen, L. S., and Liu, K. K., 2007. Seasonal variability of picoplankton in the northern South China Sea at the SEATS station. Deep Sea Research Part II: Topical Studies in Oceanography, 54(14): 1602–1616.

    Article  Google Scholar 

  • Liu, K. S., Liu, Y. Q., Hu, A. Y., Wang, F., Chen, Y. Y., Gu, Z. Q., et al., 2020. Different community assembly mechanisms underlie similar biogeography of bacteria and microeukaryotes in Tibetan Lakes. FEMS Microbiology Ecology, 96(6): fiaa071.

    Article  Google Scholar 

  • Luo, D. L., Wang, X. J., Feng, X. Y., Tian, M. D., Wang, S. S., Tang, S. L., et al., 2021. Population differentiation of Rhodobacteraceae along with coral compartments. The ISME Journal, (2): 22–25.

  • Magoč, T., and Salzberg, S. L., 2011. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27(21): 2957–2963.

    Article  Google Scholar 

  • Mahmoud, H. M., and Kalendar, A. A., 2016. Coral-associated actinobacteria: Diversity, abundance, and biotechnological potentials. Frontiers in Microbiology, 7: 396–407.

    Google Scholar 

  • Malmstrom, R. R., Cottrell, M. T., Elifantz, H., and Kirchman, D. L., 2005. Biomass production and assimilation of dissolved organic matter by SAR11 bacteria in the Northwest Atlantic Ocean. Applied and Environmental Microbiology, 71(6): 2979–2986.

    Article  Google Scholar 

  • Marie, D., Shi, X. L., Rigaut-Jalabert, F., and Vaulot, D., 2010. Use of flow cytometric sorting to better assess the diversity of small photosynthetic eukaryotes in the English Channel. FEMS Microbiology Ecology, 72(2): 165–178.

    Article  Google Scholar 

  • McDevitt-Irwin, J. M., Baum, J. K., Garren, M., and Vega Thurber, R. L., 2017. Responses of coral-associated bacterial communities to local and global stressors. Frontiers in Marine Science, 4: 262.

    Article  Google Scholar 

  • McNally, S. P., Parsons, R. J., Santoro, A. E., and Apprill, A., 2017. Multifaceted impacts of the stony coral Porites astreoides on picoplankton abundance and community composition. Limnology and Oceanography, 62(1): 217–234.

    Article  Google Scholar 

  • Morrow, K. M., Bourne, D. G., Humphrey, C., Botté, E. S., Laffy, P., Zaneveld, J., et al., 2015. Natural volcanic CO2 seeps reveal future trajectories for host-microbial associations in corals and sponges. The ISME Journal, 9(4): 894–908.

    Article  Google Scholar 

  • Morrow, K. M., Moss, A. G., Chadwick, N. E., and Liles, M. R., 2012. Bacterial associates of two caribbean coral species reveal species-specific distribution and geographic variability. Applied and Environmental Microbiology, 78(18): 6438.

    Article  Google Scholar 

  • Muyzer, G., de Waal, E. C., and Uitterlinden, A. G., 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59(3): 695–700.

    Article  Google Scholar 

  • Nakajima, R., Tanaka, Y., Guillemette, R., and Kurihara, H., 2017. Effects of coral-derived organic matter on the growth of bacterioplankton and heterotrophic nanoflagellates. Coral Reefs, 36(4): 1171–1179.

    Article  Google Scholar 

  • Nakajima, R., Tanaka, Y., Yoshida, T., Fujisawa, T., Nakayama, A., Fuchinoue, Y., et al., 2015. High inorganic phosphate concentration in coral mucus and its utilization by heterotrophic bacteria in a Malaysian coral reef. Marine Ecology, 36(3): 835–841.

    Article  Google Scholar 

  • Naumann, M. S., Richter, C., el-Zibdah, M., and Wild, C., 2009. Coral mucus as an efficient trap for picoplanktonic cyanobacteria: Implications for pelagic-benthic coupling in the reef ecosystem. Marine Ecology Progress Series, 385: 65–76.

    Article  Google Scholar 

  • Nelson, C. E., Alldredge, A. L., McCliment, E. A., Amaral-Zettler, L. A., and Carlson, C. A., 2011. Depleted dissolved organic carbon and distinct bacterial communities in the water column of a rapid-flushing coral reef ecosystem. The ISME Journal, 5(8): 1374–1387.

    Article  Google Scholar 

  • Nelson, C. E., Goldberg, S. J., Kelly, L. W., Haas, A. F., and Smith, J. E., 2013. Coral and macroalgal exudates vary in neutral sugar composition and differentially enrich reef bacterioplankton lineages. The ISME Journal, 7(5): 962–979.

    Article  Google Scholar 

  • Osterholz, H., Singer, G., Wemheuer, B., Daniel, R., Simon, M., Niggemann, J., et al., 2016. Deciphering associations between dissolved organic molecules and bacterial communities in a pelagic marine system. The ISME Journal, 10(7): 1717–1730.

    Article  Google Scholar 

  • Patten, N. L., Wyatt, A. S. J., Lowe, R. J., and Waite, A. M., 2011. Uptake of picophytoplankton, bacterioplankton and virioplankton by a fringing coral reef community (Ningaloo Reef, Australia). Coral Reefs, 30(3): 555–561.

    Article  Google Scholar 

  • Peixoto, R. S., Rosado, P. M., Leite, D. C., Rosado, A. S., and Bourne, D. G., 2017. Beneficial microorganisms for corals (BMC): Proposed mechanisms for coral health and resilience. Frontiers in Microbiology, 8: 341–352.

    Article  Google Scholar 

  • Polónia, A. R., Cleary, D. F., Duarte, L. N., de Voogd, N. J., and Gomes, N. C. M., 2014. Composition of archaea in seawater, sediment, and sponges in the Kepulauan Seribu reef system, Indonesia. Microbiology of Aquatic Systems, 67: 553–567.

    Google Scholar 

  • Polónia, A. R., Cleary, D. F., Freitas, R., Coelho, F. J., de Voogd, N. J., and Gomes, N. C. M., 2016. Comparison of archaeal and bacterial communities in two sponge species and seawater from an Indonesian coral reef environment. Marine Genomics, 29: 69–80.

    Article  Google Scholar 

  • Polónia, A. R., Cleary, D. F., Freitas, R., de Voogd, N. J., and Gomes, N. C. M., 2015. The putative functional ecology and distribution of archaeal communities in sponges, sediment and seawater in a coral reef environment. Molecular Ecology, 24(2): 409–423.

    Article  Google Scholar 

  • Pootakham, W., Mhuantong, W., Yoocha, T., Putchim, L., Jomchai, N., Sonthirod, C., et al., 2019. Heat-induced shift in coral microbiome reveals several members of the Rhodobacteraceae family as indicator species for thermal stress in Porites lutea. MicrobiologyOpen, 8(12): e935.

    Article  Google Scholar 

  • Priess, K., Le Campion-Alsumard, T., Golubic, S., Gadel, F., and Thomassin, B., 2000. Fungi in corals: Black bands and density-banding of Porites lutea and P. lobata skeleton. Marine Biology, 136: 19–27.

    Article  Google Scholar 

  • Rädecker, N., Pogoreutz, C., Voolstra, C. R., Wiedenmann, J., and Wild, C., 2015. Nitrogen cycling in corals: The key to understanding holobiont functioning?. Trends in Microbiology, 23(8): 490–497.

    Article  Google Scholar 

  • Raghukumar, C., and Ravindran, J., 2012. Fungi and their role in corals and coral reef ecosystems. Progress in Molecular and Subcellular Biology, 53: 89–113.

    Article  Google Scholar 

  • Ribalet, F., Swalwell, J., Clayton, S., Jiménez, V., Sudek, S., Lin, Y., et al., 2015. Light-driven synchrony of Prochlorococcus growth and mortality in the subtropical Pacific gyre. Proceedings of the National Academy of Sciences of the United States of America, 112(26): 8008–8012.

    Article  Google Scholar 

  • Robinson, M. D., McCarthy, D. J., and Smyth, G. K., 2009. edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1): 139–140.

    Article  Google Scholar 

  • Rocap, G., Distel, D. L., Waterbury, J. B., and Chisholm, S. W., 2002. Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S–23S ribosomal DNA internal transcribed spacer sequences. Applied and Environmental Microbiology, 68(3): 1180–1191.

    Article  Google Scholar 

  • Romari, K., and Vaulot, D., 2004. Composition and temporal variability of picoeukaryote communities at a coastal site of the English Channel from 18S rDNA sequences. Limnology and Oceanography, 49(3): 784–798.

    Article  Google Scholar 

  • Schlitzer, R., 2002. Interactive analysis and visualization of geoscience data with ocean data view. Computures & Geosciences, 28(10): 1211–1218.

    Article  Google Scholar 

  • Schneider, L., Anestis, K., Mansour, J., Anschütz, A., Gypens, N., Hansen, P., et al., 2020. A dataset on trophic modes of aquatic protists. Biodiversity Data Journal, 8: e56648.

    Article  Google Scholar 

  • Seenivasan, R., Sausen, N., Medlin, L., and Melkonian, M., 2013. Picomonas judraskeda gen. et sp. nov.: The first identified member of the Picozoa phylum nov., a widespread group of picoeukaryotes, formerly known as ‘Picobiliphytes’. PLoS One, 8: e59565.

    Article  Google Scholar 

  • Seymour, J. R., Patten, N. L., Bourne, D., and Mitchell, J. G., 2005. Spatial dynamics of virus-like particles and heterotrophic bacteria within a shallow coral reef system. Marine Ecology Progress Series, 288: 1–8.

    Article  Google Scholar 

  • Sherr, B., Sherr, E. B., Caron, D. A., Vaulot, D., and Worden, A. Z., 2007. Oceanic Protists. Oceanography, Washington D. C., 20: 130–134.

    Article  Google Scholar 

  • Silveira, C. B., Cavalcanti, G. S., Walter, J. M., Silva-Lima, A. W., Dinsdale, E. A., Bourne, D. G., et al., 2017. Microbial processes driving coral reef organic carbon flow. FEMS Microbiology Reviews, 41(4): 575–595.

    Article  Google Scholar 

  • Strehl, B., Holtzendorff, J., Partensky, F., and Hess, W. R., 1999. A small and compact genome in the marine cyanobacterium Prochlorococcus marinus CCMP 1375: Lack of an intron in the gene for tRNA(Leu)UAA and a single copy of the rRNA operon. FEMS Microbiology Letters, 181(2): 261–266.

    Article  Google Scholar 

  • Sudek, S., Everroad, R. C., Gehman, A. L. M., Smith, J. M., Poirier, C. L., Chavez, F. P., et al., 2015. Cyanobacterial distributions along a physico-chemical gradient in the northeastern Pacific Ocean. Environmental Microbiology, 17(10): 3692–3707.

    Article  Google Scholar 

  • Tout, J., Jeffries, T. C., Webster, N. S., Stocker, R., Ralph, P. J., and Seymour, J. R., 2014. Variability in microbial community composition and function between different niches within a coral reef. Microbial Ecology, 67(3): 540–552.

    Article  Google Scholar 

  • Vaulot, D., Marie, D., Olson, R. J., and Chisholm, S. W., 1995. Growth of Prochlorococcus, a photosynthetic prokaryote, in the equatorial Pacific Ocean. Science, 268(5216): 1480–1482.

    Article  Google Scholar 

  • Wang, R., Yu, K., Jones, B., Wang, Y. H., Zhao, J. X., Feng, Y. X., et al., 2018. Evolution and development of miocene ‘island dolostones’ on Xisha Islands, South China Sea. Marine Geology, 406: 142–158.

    Article  Google Scholar 

  • Wang, Y. P., Li, G. H., Shi, F., Dong, J., Gentekaki, E., Zou, S. B., et al., 2020. Taxonomic diversity of pico-/nanoeukaryotes is related to dissolved oxygen and productivity, but functional composition is shaped by limiting nutrients in eutrophic coastal oceans. Frontiers in Microbiology, 11: 601037.

    Article  Google Scholar 

  • Wangpraseurt, D., Weber, M., Røy, H., Polerecky, L., de Beer, D., and Nugues, M. M., 2012. In situ oxygen dynamics in coral-algal interactions. PLoS One, 7(2): e31192.

    Article  Google Scholar 

  • Wafar, M., Wafar, S., and David, J. J., 1990. Nitrification in reef corals. Limnology and Oceanography, 35(3): 725–730.

    Article  Google Scholar 

  • Weber, L., and Apprill, A., 2020. Diel, daily, and spatial variation of coral reef seawater microbial communities. PLoS One, 15(3): e0229442.

    Article  Google Scholar 

  • Wiedenmann, J., D’Angelo, C., Smith, E. G., Hunt, A. N., Legiret, F. E., Postle, A. D., et al., 2013. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nature Climate Change, 3(2): 160–164.

    Article  Google Scholar 

  • Wu, F., Xie, X. N., Betzler, C., Zhu, W. L., Zhu, Y. H., Guo, L. Y., et al., 2019. The impact of eustatic sea-level fluctuations, temperature variations and nutrient-level changes since the Pliocene on tropical carbonate platform (Xisha Islands, South China Sea). Palaeogeography, Palaeoclimatology, Palaeoecology, 514: 373–385.

    Article  Google Scholar 

  • Wu, P. F., Li, D. X., Kong, L. F., Li, Y. Y., Zhang, H., Xie, Z. X., et al., 2020. The diversity and biogeography of microeukaryotes in the euphotic zone of the northwestern Pacific Ocean. Science of the Total Environment, 698: 134289.

    Article  Google Scholar 

  • Wu, M. L., Dong, J., and Wang, Y. S., 2017. Identification of seawater quality by multivariate statistical analysis in Xisha Islands, South China Sea. In: Water Quality. Hlanganani, T., ed., IntechOpen, DOI: https://doi.org/10.5772/66227.

  • Xu, D., Li, R., Hu, C., Sun, P., Jiao, N., and Warren, A., 2017. Microbial eukaryote diversity and activity in the water column of the South China Sea based on DNA and RNA high throughput sequencing. Frontiers in Microbiology, 8: 1121.

    Article  Google Scholar 

  • Xu, L. Q., Liu, X. D., Sun, L. G., Yan, H., Liu, Y., Luo, Y. H., et al., 2011. Geochemical evidence for the development of coral island ecosystem in the Xisha Archipelago of South China Sea from four ornithogenic sediment profiles. Chemical Geology, 286(3): 135–145.

    Google Scholar 

  • Ye, G. Z., Zhang, X., Yan, C. Z., Lin, Y., and Huang, Q. S., 2021. Polystyrene microplastics induce microbial dysbiosis and dysfunction in surrounding seawater. Environment International, 156: 106724.

    Article  Google Scholar 

  • Zaneveld, J. R., Burkepile, D. E., Shantz, A. A., Pritchard, C. E., McMinds, R., Payet, J. P., et al., 2016. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nature Communications, 7(1): 11833.

    Article  Google Scholar 

  • Ziegler, M., Roik, A., Porter, A., Zubier, K., Mudarris, M. S., Ormond, R., et al., 2016. Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea. Marine Pollution Bulletin, 105(2): 629–640.

    Article  Google Scholar 

  • Zhou, J. Z., Wu, L. Y., Deng, Y., Zhi, X. Y., Jiang, Y. H., Tu, Q. C., et al., 2011. Reproducibility and quantitation of amplicon sequencing-based detection. The ISME Journal, 5(8): 1303–1313.

    Article  Google Scholar 

  • Zhu, P., Wang, Y. P., Shi, T. T., Huang, G. Q., and Gong, J., 2018. Genetic diversity of benthic microbial eukaryotes in response to spatial heterogeneity of sediment geochemistry in a mangrove ecosystem. Estuaries and Coasts, 41(3): 751–764.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2018YF C1406501), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA23050303), the National Natural Science Foundation of China (Nos. 41676154, 41976115), and the Key Research Program of Frontier Sciences of CAS (Nos. QYZDB-SSW-DQC013, QYZ DB-SSW-DQC041).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhijun Dong or Jianmin Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wang, L., Peng, S. et al. Abundance, Diversity and Functional Potentials of Planktonic Bacteria and Microeukaryotes in the Coral-Reef System of Xisha Islands, China. J. Ocean Univ. China 21, 748–762 (2022). https://doi.org/10.1007/s11802-022-5107-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-022-5107-y

Key words

Navigation