Skip to main content
Log in

Cloning, Expressing and Characterizing a Novel Cold-Adapted Laminarinase from Marine Bacterium Wenyingzhuangia aestuarii OF219

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Laminarinases reveal potential application in the field of food and biotechnology. In this research, a novel GH16 family laminarinase, designated as Lam16A_Wa, was cloned from the genome of marine bacterium Wenyingzhuangia aestuarii OF219 and expressed in Escherichia coli. Lam16A_Wa demonstrates a relatively low optimal reaction temperature (35°C) and a cold-adapted feature. Its optimal pH value is 6.0 and is stable in a broad pH range from 3.0 to 11.0. A glycomics strategy was employed to investigate the hydrolytic pattern of Lam16A_Wa. The enzyme was confirmed as a random endo-acting glycoside hydrolase. Its minimum substrate was laminarin pentasaccharide, and the major final products are oligosaccharides, including disaccharide to pentasaccharide. The Lam16A_Wa provides a novel and well-defined tool for the molecular tailoring of laminarin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul, S., Madden, T., Schaffer, A., Zhang, J. H., Zhang, Z., Miller, W., et al., 1998. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Faseb Journal, 12(8, S): A1326.

    Google Scholar 

  • Balla, S., Laurent, L., Sujata, S. O., Aruna, V., Richard, D., Hsei-Wei, W., et al., 2014. Oligo-β-(1→3)-glucans: Impact of thiobridges on immunostimulating activities and the development of cancer stem cells. Journal of Medicinal Chemistry, 57(20): 8280–8292.

    Article  Google Scholar 

  • Bl Ttel, V., Larisika, M., Pfeiffer, P., Nowak, C., Eich, A., Eckelt, J., et al., 2011. Beta-1,3-glucanase from Delftia tsuruhatensis strain MV01 and its potential application in vinification. Applied & Environmental Microbiology, 77(3): 983–990.

    Article  Google Scholar 

  • Burkhardt, C., Schaefers, C., Claren, J., Schirrmacher, G., and Antranikian, G., 2019. Comparative analysis and biochemical characterization of two endo-beta-1,3-glucanases from the thermophilic bacterium Fervidobacterium sp.. CATALYSTS, 9: 830.

    Article  Google Scholar 

  • Chang, Y., Hu, Y., and McClements, D. J., 2016. Competitive adsorption and displacement of anionic polysaccharides (fucoidan and gum arabic) on the surface of protein-coated lipid droplets. Food Hydrocolloid, 52: 820–826.

    Article  Google Scholar 

  • Cheng, R., Chen, J., Yu, X., Wang, Y., Wang, S., and Zhang, J., 2013. Recombinant production and characterization of full-length and truncated beta-1,3-glucanase PglA from Paenibacillus sp S09. BMC Biotechnology, 13: 105.

    Article  Google Scholar 

  • Cheng, Y., Hong, T., Liu, C., and Meng, M., 2009. Cloning and functional characterization of a complex endo-beta-1,3-glucanase from Paenibacillus sp.. Applied Microbiology and Biotechnology, 81(6): 1051–1061.

    Article  Google Scholar 

  • Hartl, L., Gastebois, A., Aimanianda, V., and Latge, J., 2011. Characterization of the GPI-anchored endo beta-1,3-glucanase Eng2 of Aspergillus fumigatus. Fungal Genetics and Biology, 48(2): 185–191.

    Article  Google Scholar 

  • Hong, T. Y., and Meng, M., 2003. Biochemical characterization and antifungal activity of an endo-1,3-beta-glucanase of Paenibacillus sp. isolated from garden soil. Applied Microbiology and Biotechnology, 61(5–6): 472–478.

    Article  Google Scholar 

  • Hong, T. Y., Cheng, C. W., Huang, J. W., and Meng, M. S., 2002. Isolation and biochemical characterization of an endo-1,3-beta-glucanase from Streptomyces sioyaensis containing a C-terminal family 6 carbohydrate-binding module that binds to 1,3-beta-glucan. Microbiology-SGM, 148(Pt 4): 1151.

    Article  Google Scholar 

  • Jaafar, N. R., Khoiri, N. M., Ismail, N. F., Mahmood, N. A. N., Abdul Murad, A. M., Abu Bakar, F. D., et al., 2020. Functional characterisation and product specificity of Endo-beta-1,3-glucanase from alkalophilic bacterium, Bacillus lehensis G1. Enzyme and Microbial Technology, 140: 109625.

    Article  Google Scholar 

  • Kadam, S. U., O’Donnell, C. P., Rai, D. K., Hossain, M. B., Burgess, C. M., Walsh, D., et al., 2015. Laminarin from Irish brown seaweeds Ascophyllum nodosum and laminaria hyperborea: Ultrasound assisted extraction, characterization and bioactivity. Marine Drugs, 13(7): 4270–4280.

    Article  Google Scholar 

  • Kim, K. H., Kim, Y. W., Han, B. K., Lee, B. J., and Dong, S. L., 2006. Anti-apoptotic activity of laminarin polysaccharides and their enzymatically hydrolyzed oligosaccharides from Laminaria japonica. Biotechnology Letters, 28(6): 439–446.

    Article  Google Scholar 

  • Klarzynski, O., Plesse, B., Joubert, J. M., Yvin, J. C., Kopp, M., Kloareg, B., et al., 2000. Linear beta-1,3 glucans are elicitors of defense responses in tobacco. Plant Physiology, 124(3): 1027–1038.

    Article  Google Scholar 

  • Krah, M., Misselwitz, R., Politz, O., Thomsen, K., Welfle, H., and Borriss, R., 2010. The laminarinase from thermophilic eubacterium Rhodothermus marinus–Conformation, stability, and identification of active site carboxylic residues by site-directed mutagenesis. European Journal of Biochemistry, 257(1): 101–111.

    Article  Google Scholar 

  • Kumar, K., Correia, M. A. S., Pires, V. M. R., Dhillon, A., Sharma, K., Rajulapati, V., et al., 2018. Novel insights into the degradation of beta-1,3-glucans by the cellulosome of Clostridium thermocellum revealed by structure and function studies of a family 81 glycoside hydrolase. International Journal of Biological Macromolecules, 117: 890–901.

    Article  Google Scholar 

  • Kusaykin, M. I., Belik, A. A., Kovalchuk, S. N., Dmitrenok, P. S., Rasskazov, V. A., Isakov, V. V., et al., 2017. A new recombinant endo-1,3-beta-D-glucanase from the marine bacterium Formosa algae KMM 3553: Enzyme characteristics and transglycosylation products analysis. World Journal of Microbiology & Biotechnology, 33(2): 40.

    Article  Google Scholar 

  • Labourel, A., Jam, M., Jeudy, A., Hehemann, J., Czjzek, M., and Michel, G., 2014. The beta-glucanase ZgLamA from Zobellia galactanivorans evolved a bent active site adapted for efficient degradation of algal laminarin. Journal of Biological Chemistry, 289(4): 2027–2042.

    Article  Google Scholar 

  • Labourel, A., Jam, M., Legentil, L., Sylla, B., Hehemann, J., Ferrieres, V., et al., 2015. Structural and biochemical characterization of the laminarinase ZgLamC (GH16) from Zobellia galactanivorans suggests preferred recognition of branched laminarin. Acta Crystallographica Section D–Structural Biology, 71(2): 173–184.

    Article  Google Scholar 

  • Lee, K. C., Arai, T., Ibrahim, D., Kosugi, A., Prawitwong, P., Lan, D., et al., 2014. Purification and characterization of a thermostable laminarinase from Penicillium rolfsii c3-2 (1) IBRL. BioResources, 9(1): 1072–1084.

    Article  Google Scholar 

  • Lever, M., 1972. A new reaction for colorimetric determination of carbohydrates. Analytical Biochemistry, 47(1): 273–279.

    Article  Google Scholar 

  • Liu, Z., Xiong, Y., Yi, L., Dai, R., Wang, Y., Sun, M., et al., 2018. Endo-β-1,3-glucanase digestion combined with the HPAEC-PAD-MS/MS analysis reveals the structural differences between two laminarins with different bioactivities. Carbohydrate Polymers, 194: 339.

    Article  Google Scholar 

  • Masuda, S., Endo, K., Koizumi, N., Hayami, T., Fukazawa, T., Yatsunami, R., et al., 2006. Molecular identification of a novel beta-1,3-glucanase from alkaliphilic Nocardiopsis sp strain F96. Extremophiles, 10(3): 251–255.

    Article  Google Scholar 

  • Mitsuya, D., Sugiyama, T., Zhang, S., Takeuchi, Y., Okai, M., Urano, N., et al., 2018. Enzymatic properties and the gene structure of a cold-adapted laminarinase from Pseudoalteromonas species LA. Journal of Bioscience and Bioengineering, 126(2): 169–175.

    Article  Google Scholar 

  • Miyanishi, N., Iwamoto, Y., Watanabe, E., and Odaz, T., 2003. Induction of TNF-α production from human peripheral blood monocytes with β-1,3-glucan oligomer prepared from laminarin with β-1,3-glucanase from Bacillus clausii NM-1. Journal of Bioscience & Bioengineering, 95(2): 192–195.

    Article  Google Scholar 

  • Petersen, T. N., Brunak, S., von Heijne, G., and Nielsen, H., 2011. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nature Methods, 8(10): 785–786.

    Article  Google Scholar 

  • Shi, P. J., Yao, G. Y., Yang, P. L., Li, N., Luo, H. Y., Bai, Y. G., et al., 2010. Cloning, characterization, and antifungal activity of an endo-1,3-beta-D-glucanase from Streptomyces sp. S27. Applied Microbiology & Biotechnology, 85(5): 1483–1490.

    Article  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S., 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30(12): 2725–2729.

    Article  Google Scholar 

  • Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G., 1997. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25(24): 4876–4882.

    Article  Google Scholar 

  • Wilkins, M. R., Gasteiger, E., Bairoch, A., Sanchez, J. C., Williams, K. L., Appel, R. D., et al., 1999. Protein identification and analysis tools in the ExPASy server. Methods in Molecular Biology, 112(112): 531.

    Google Scholar 

  • Yi, P., Yan, Q., Jiang, Z., and Wang, L., 2018. A first glycoside hydrolase family 50 endo-beta-1,3-D-glucanase from Pseudomonas aeruginosa. Enzyme and Microbial Technology, 108: 34–41.

    Article  Google Scholar 

  • Yin, G., Li, W., Lin, Q., Lin, X., Lin, J., Zhu, Q., et al., 2014. Dietary administration of laminarin improves the growth performance and immune responses in Epinephelus coioides. Fish & Shellfish Immunology, 41(2): 402–406.

    Article  Google Scholar 

  • Yin, Y., Mao, X., Yang, J., Chen, X., Mao, F., and Xu, Y., 2012. dbCAN: A web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Research, 40(W1): W445–W451.

    Article  Google Scholar 

  • Zakharenko, A. M., Kusaykin, M. I., Kovalchuk, S. N., Sova, V. V., Silchenko, A. S., Belik, A. A., et al., 2012. Catalytic properties and amino acid sequence of endo-1→3-beta-D-glucanase from the marine mollusk Tapes literata. Biochemistry–Moscow, 77(8): 878–888.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2018YFC0311203), and the Fundamental Research Funds for the Central Universities (No. 201941005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaoguang Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Xue, C., Chang, Y. et al. Cloning, Expressing and Characterizing a Novel Cold-Adapted Laminarinase from Marine Bacterium Wenyingzhuangia aestuarii OF219. J. Ocean Univ. China 22, 1034–1040 (2023). https://doi.org/10.1007/s11802-023-5394-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-023-5394-y

Key words

Navigation