Skip to main content
Log in

One-dimensional approaches for methane hydrate production by CO2/N2 gas mixture in horizontal and vertical column reactor

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The recovery of methane gas from methane hydrate bearing sediments was investigated by using a continuous stream of a CO2 and N2 gas mixture. A long cylindrical high-pressure reactor was designed to demonstrate the recovery of methane from methane hydrate bearing sediments, and the injection rate of the gas mixture was controlled to monitor the amount of recovered methane from methane hydrates. The recovery efficiency of methane gas from methane hydrates is inversely proportional to the flow rate of the CO2 and N2 gas mixture. Methane hydrates were synthesized by using two different sediments, having particle size distributions of 75 to 150 μm and 45 to 90 μm with the same porosity, and the recovery efficiency of methane from methane hydrates was also monitored. We confirmed that there is no significant difference in the replacement characteristics by using these two different sediments. Horizontal and vertical flows of the CO2 and N2 gas mixture were applied to monitor the effect of flow direction on replacement characteristics. We also confirmed that a similar amount of methane was recovered in horizontal and vertical flows of the CO2 and N2 gas mixture at the same flow rate. The present study may help in establishing the process variables for recovering methane gas from methane hydrate bearing sediments in offshore conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. A. Jeffrey, Inclusion Compounds, Vol. 1 (eds. J. L. Atwood, J. E.D. Davies, D.D. MacNicol), Academic, London (1984).

    Google Scholar 

  2. E.D. Sloan and C. A. Koh, Clathrate hydrates of natural gases, CRC Press Llc. (2008).

    Google Scholar 

  3. R. Boswell and T. S. Collett, Energy Environ. Sci., 4(4), 1206 (2011).

    Article  CAS  Google Scholar 

  4. K. A. Kvenvolden, Natural gas hydrate: Background and history of discovery, In Natural Gas Hydrate, Springer (2003).

    Google Scholar 

  5. T. S. Collett, AAPG Bulletin, 86(11), 1971 (2002).

    CAS  Google Scholar 

  6. G. J. Moridis and E.D. Sloan, Energy Convers. Manage., 48(6), 1834 (2007).

    Article  CAS  Google Scholar 

  7. Y. F. Makogon, J. Natural Gas Sci. Eng., 2(1), 49 (2010).

    Article  CAS  Google Scholar 

  8. Y. Makogon, S. Holditch and T. Makogon, J. Petroleum Sci. Eng., 56(1), 14 (2007).

    Article  CAS  Google Scholar 

  9. S.-Y. Lee and G.D. Holder, Fuel Process. Technol., 71(1), 181 (2001).

    Article  CAS  Google Scholar 

  10. T. S. Collett, Geotimes, 49, 24 (2004).

    Google Scholar 

  11. P. Englezos and J.D. Lee, Korean J. Chem. Eng., 22(5), 671 (2005).

    Article  CAS  Google Scholar 

  12. P. L. McGuire Methane hydrate gas production: An assessment of conventional production technology as applied to hydrate gas recovery, Los Alamos National Laboratory, Los Alamos (1981).

    Google Scholar 

  13. G.D. Holder and P.F. Angert, In Simulation of gas production from a reservoir containing both gas hydrates and free natural gas, SPE annual technical conference and exhibition, Society of Petroleum Engineers (1982).

    Google Scholar 

  14. K. Ohgaki, K. Takano, H. Sangawa, T. Matsubara and S. Nakano, J. Chem. Eng. Japan, 29(3), 478 (1996).

    Article  CAS  Google Scholar 

  15. S. Hirohama, Y. Shimoyama, A. Wakabayashi, S. Tatsuta and N. Nishida, J. Chem. Eng. Japan, 29(6), 1014 (1996).

    Article  CAS  Google Scholar 

  16. H. Lee, Y. Seo, Y.T. Seo, I.L. Moudrakovski and J.A. Ripmeester, Angewandte Chemie Int. Ed., 42(41), 5048 (2003).

    Article  CAS  Google Scholar 

  17. H. Lee, Y. Seo, Y.-T. Seo, I.L. Moudrakovski and J.A. Ripmeester, Studies in Surface Sci. Catal., 153, 495 (2004).

    Article  CAS  Google Scholar 

  18. M. Ota, T. Saito, T. Aida, M. Watanabe, Y. Sato, R. L. Smith and H. Inomata, AIChE J., 53(10), 2715 (2007).

    Article  CAS  Google Scholar 

  19. C.-Y. Geng, H. Wen and H. Zhou, The J. Phys. Chem. A, 113(18), 5463 (2009).

    Article  CAS  Google Scholar 

  20. Y. Park, D.Y. Kim, J.W. Lee, D. G. Huh, K. P. Park, J. Lee and H. Lee, P. Natl. Acad. Sci. USA, 103(34), 12690 (2006).

    Article  CAS  Google Scholar 

  21. K. Shin, Y. Park, M. J. Cha, K. P. Park, D. G. Huh, J. Lee, S. J. Kim and H. Lee, Energy Fuel, 22(5), 3160 (2008).

    Article  CAS  Google Scholar 

  22. D.Y. Koh, H. Kang, D.O. Kim, J. Park, M. Cha and H. Lee, Chem-SusChem, 5(8), 1443 (2012).

    CAS  Google Scholar 

  23. M. Cha, K. Shin, H. Lee, I. L. Moudrakovski, J. A. Ripmeester and Y. Seo, Environ. Sci. Technol., 49(3), 1964 (2015).

    Article  CAS  Google Scholar 

  24. D.Y. Koh, Y. H. Ahn, H. Kang, S. Park, J.Y. Lee, S. J. Kim, J. Lee and H. Lee, AIChE J., 61(3), 1004 (2015).

    Article  CAS  Google Scholar 

  25. P. Dornan, S. Alavi and T. Woo, The J. Chem. Phys., 127(12), 124510 (2007).

    Article  Google Scholar 

  26. D. Schoderbek, K. L. Martin, J. Howard, S. Silpngarmlert, K and Hester, In North Slope hydrate fieldtrial: CO2/CH4 exchange, OTC Arctic Technology Conference, Offshore Technology Conference (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yutaek Seo or Huen Lee.

Additional information

This article is dedicated to Prof. Huen Lee on the occasion of his retirement from KAIST.

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youn, Y., Cha, M., Kwon, M. et al. One-dimensional approaches for methane hydrate production by CO2/N2 gas mixture in horizontal and vertical column reactor. Korean J. Chem. Eng. 33, 1712–1719 (2016). https://doi.org/10.1007/s11814-015-0294-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0294-5

Keywords

Navigation