Skip to main content

Advertisement

Log in

Response surface methodology in optimization of a divided wall column

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

dividing wall column (DWC) is a thermally coupled distillation system with a high energy efficiency that requires lower space and investment compared to the conventional column system. The design of a DWC involves a number of structural and process parameters that need to be optimized simultaneously to improve energetic and economic potential and reduce space requirement. We used response surface methodology (RSM) to optimize DWC nonlinearly and to figure out the effect of parameters and their interactions on energy consumption, product quality, and dimensions of a DWC. Results demonstrate that process variables have significant effects on the energy efficiency of a DWC as compared to the effect of structural variables. The optimum DWC parameters can be found by RSM with minimal simulation runs and the prediction results of RSM agree well with the rigorous simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Harmsen, Chem. Eng. Processing: Process Intensification, 49, 70 (2010).

    Article  CAS  Google Scholar 

  2. R. Taylor, R. Krishna and H. Kooijman, Chem. Eng. Prog., 98, 28 (2003).

    Google Scholar 

  3. P. Proios, N. F. Goula and E. N. Pistikopoulos, Ind. Eng. Chem. Res., 44, 4656 (2005).

    Article  CAS  Google Scholar 

  4. A. Harwardt, S. Kossack and W. Marquardt, Comput.-Aided Chem. Eng., 25, 91 (2008).

    Article  Google Scholar 

  5. O. Yildirim, A. A. Kiss and E. Y. Kenig, Sep. Purif. Technol., 80, 403 (2011).

    Article  CAS  Google Scholar 

  6. F. B. Petlyuk, Int. Chem. Eng., 5, 555 (1965).

    Google Scholar 

  7. Y. H. Kim, M. Nakaiwa and K. S. Hwang, Korean J. Chem. Eng., 19, 383 (2002).

    Article  CAS  Google Scholar 

  8. Y. H. Kim, K. S. Hwang and M. Nakaiwa, Korean J. Chem. Eng., 21, 1098 (2004)

    Article  CAS  Google Scholar 

  9. G. Kaibel, Chem. Ing. Tech., 59, 533 (1987).

    Google Scholar 

  10. M. A. Schultz, D. G. Stewart, J. M. Harris, J. M. S. P. Rosenblum, M. S. Shakur and D. E. O’Brien, Chem. Eng. Prog., 98, 64 (2002).

    CAS  Google Scholar 

  11. I. Dejanovi, Lj. Matijaševi and Ž. Oluji, Chem. Eng. Process., 49, 559 (2010).

    Article  CAS  Google Scholar 

  12. B. G. Rong, Chem. Eng. Res. Des., 89, 1281 (2011).

    Article  CAS  Google Scholar 

  13. N. V. D. Long, S. H. Lee and M. Y. Lee, Chem. Eng. Process, 49, 825 (2010).

    Article  CAS  Google Scholar 

  14. C. Triantafyllou and R. Smith, Chem. Eng. Res. Des., 70, 118 (1992).

    CAS  Google Scholar 

  15. F. Z. Seihoub, H. Benyounes, W. Shen and V. Gerbaud, Ind. Eng. Chem. Res., 56, 9710 (2017).

    Article  CAS  Google Scholar 

  16. C. E. Torres-Ortega and B. G. Rong, Ind. Eng. Chem. Res., 55, 7411 (2016).

    Article  CAS  Google Scholar 

  17. G. Madenoor Ramapriya, M. Tawarmalani and R. Agrawal, AIChE J., 64, 649 (2018).

    Article  CAS  Google Scholar 

  18. G. Madenoor Ramapriya, M. Tawarmalani and R. Agrawal, AIChE J., 64, 660 (2018).

    Article  CAS  Google Scholar 

  19. W. L. Luyben, Chem. Eng. Res. Des., 123, 152 (2017).

    Article  CAS  Google Scholar 

  20. Y. H. Kim, Chem. Eng. Commun., 205, 134 (2018).

    Article  CAS  Google Scholar 

  21. I. J. Halvorsen and S. Skogestad, Ind. Eng. Chem. Res., 42, 596 (2003).

    Article  CAS  Google Scholar 

  22. Z. Fidkowski and L. Krolikowski, AIChE J., 32, 537 (1986).

    Article  CAS  Google Scholar 

  23. N. A. Carlberg and A. W. Westerberg, Ind. Eng. Chem. Res., 28, 1379 (1989).

    Article  CAS  Google Scholar 

  24. N. A. Carlberg and A. W. Westerberg, Ind. Eng. Chem. Res., 28, 1386 (1989).

    Article  CAS  Google Scholar 

  25. N. Ramírez-Corona, A. Jiménez-Gutiérrez, A. Castro-Agüero and V. Rico-Ramírez, Chem. Eng. Res. Des., 88, 1405 (2010).

    Article  CAS  Google Scholar 

  26. S. H. Lee, M. Shamsuzzoha, M. Han, Y. H. Kim and M. Y. Lee, Korean J. Chem. Eng., 28, 348 (2011).

    Article  CAS  Google Scholar 

  27. N. V. D. Long and M. Y. Lee, Asia Pac. J. Chem. Eng., 6, 338 (2011).

    Article  CAS  Google Scholar 

  28. R. Premkumar and G. P. Rangaiah, Chem. Eng. Res. Des., 87, 47 (2009).

    Article  CAS  Google Scholar 

  29. Dejanovic, L. Matijasevic, H. Jansen and Z. Olujic, Ind. Eng. Chem. Res., 50, 5680 (2011).

    Article  CAS  Google Scholar 

  30. G. P. Rangaiah, E. L. Ooi and R. Premkumar, Chem. Prod. Process Model., 4, 7 (2009).

    Google Scholar 

  31. J. G. S. Herna´ndez, S. Herna´ndez and A. Jime´nez, Inst. Chem. Eng., 80, 783 (2002).

    Article  Google Scholar 

  32. M. Serra, A. Espun˜a and L. Puigjaner, Ind. Eng. Chem. Res., 42, 1773 (2003).

    Article  CAS  Google Scholar 

  33. S. Herna´ ndez and J. S. Me´ndez, Chem. Eng. Commun., 192, 1085 (2005).

    Article  CAS  Google Scholar 

  34. S. Wenzel and H. J. Röhm, Chem. Ing. Technol., 27, 484 (2004).

    CAS  Google Scholar 

  35. A. A. Kiss and J. P. S. David, Comput. Chem. Eng., 38, 74 (2012).

    Article  CAS  Google Scholar 

  36. J. A. Caballero and I. E. Grossmann, Comput. Chem. Eng., 61, 118 (2014).

    Article  CAS  Google Scholar 

  37. C. Guitérrez-Antonio and A. Briones-Ramírez, Comput. Chem. Eng., 33, 454 (2009).

    Article  CAS  Google Scholar 

  38. N. V. D. Long and M. Lee, Korean J. Chem. Eng., 29, 567 (2012).

    Article  CAS  Google Scholar 

  39. V. K. Sangal, V. Kumar and I. M. Mishra, Comput. Chem. Eng., 40, 33 (2012).

    Article  CAS  Google Scholar 

  40. W. L. Luyben, Distillation design and control using Aspen simulation, Wiley, New York (2013).

    Book  Google Scholar 

  41. T. D. Nguyen, Conceptual design, simulation and experimental validation of divided wall column: application for non-reactive and reactive mixture, PhD diss (2015).

    Google Scholar 

  42. D. C. Montgomery, Design and Analysis of Experiments, Wiley, New York (2001).

    Google Scholar 

  43. R. Myers, Response Surface Methodology. Boston: Allyn and Bacon, Inc. (1971).

    Google Scholar 

  44. R. L. Mason, R. F. Gunst and J. L. Hess, Statistical design and analysis of experiments: with applications to engineering and science, Wiley, New York (2003).

    Book  Google Scholar 

  45. T. W. Anderson and D. A. Darling, Ann. Math. Statist., 23, 2 (1952)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahbar Rahimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavasani, M.S., Rahimi, R. & Zivdar, M. Response surface methodology in optimization of a divided wall column. Korean J. Chem. Eng. 35, 1414–1422 (2018). https://doi.org/10.1007/s11814-018-0048-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0048-2

Keywords

Navigation