Skip to main content

Advertisement

Log in

Highly dispersed Cu-ZnO-ZrO2 nanoparticles on hydrotalcite adsorbent as efficient composite catalysts for CO2 hydrogenation to methanol

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

CO2 hydrogenation to methanol is attracting specific interest because of its potential economic and environmental benefits in transforming waste CO2 to value-added hydrocarbons. Copper-based catalysts are documented as efficient and widely applied, whereas insufficient catalytic properties of conventional catalysts hinder their application. Herein, catalysts using Mg-Al hydrotalcite (HT) as the carrier of Cu/ZnO/ZrO2 (CZZ) nanoparticles were prepared to exploit special advantages of hydrotalcite on copper dispersion and catalytic performance. The results show that CZZ nanoparticles can be uniformly dispersed on external surfaces of HT, elevating BET surface areas of CZZ-HT samples by at least 2.5 times compared to pure CZZ. The HT carrier also enriches strong basic sites and hence elevates CO2 adsorption capabilities in the range of reaction temperature. Both copper surface area and copper dispersion of CZZ-HT samples are improved dramatically. A catalyst containing 45.1 wt% of CZZ shows 1.1 times higher copper surface area per gram CZZ and 1.6 times higher copper dispersion than the reference CZZ. Subsequent reactions demonstrate the CZZ-HT samples show remarkably promoted turnover frequency (TOF) for methanol synthesis and retain considerable catalyst stability. The typical catalyst prepared in this research, at the reaction temperature of 523 K and pressure of 3.0 MPa, presents a 68.2% higher methanol STYCu per gram copper and an 117.0% higher SMeOH/SCO ratio than the commercial catalyst. The support HT plays a crucial role for the enhanced catalytic performance physically and chemically. Thus, the as-prepared CZZ-HT catalyst provides a significant improvement for CO2 utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Olah, A. Goeppert and G. K. S. Prakash, J. Org. Chem., 74, 487 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. A. Goeppert, M. Czaun, J.-P. Jones, G. K Surya Prakash and G. A. Olah, Chem. Soc. Rev., 43, 7995 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. S. Kar, J. Kothandaraman, A. Goeppert and G. K. S. Prakash, J. CO2Util., 23, 212 (2018).

    Article  CAS  Google Scholar 

  4. F. Frusteri, M. Migliori, C. Cannilla, L. Frusteri, E. Catizzone, A. Aloise, G. Giordano and G. Bonura, J. CO2Util., 18, 353 (2017).

    Article  CAS  Google Scholar 

  5. F. Jiao, J. Li, X. Pan, J. Xiao, H. Li, H. Ma, M. Wei, Y. Pan, Z. Zhou, M. Li, S. Miao, J. Li, Y. Zhu, D. Xiao, T. He, J. Yang, F. Qi, Q. Fu and X. Bao, Science, 351, 1065 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Z. Wan, W. Wu, G. (Kevin) Li, C. Wang, H. Yang and D. Zhang, Appl. Catal. A Gen., 523, 312 (2016).

    Article  CAS  Google Scholar 

  7. J. M. Thomas and K. D. M. Harris, Energy Environ. Sci., 9, 687 (2016).

    Article  CAS  Google Scholar 

  8. M. Kong, Z. Liu, T. Vogt and Y. Lee, Micropor. Mesopor. Mater., 221, 253 (2016).

    Article  CAS  Google Scholar 

  9. Y. Men, X. Fang, Q. Gu, R. Singh, F. Wu, D. Danaci, Q. Zhao, P. Xiao and P. A. Webley, Appl. Catal. B Environ., 275, 119067 (2020).

    Article  CAS  Google Scholar 

  10. F. Studt, I. Sharafutdinov, F. Abild-Pedersen, C. F. Elkjær, J. S. Hummelshøj, S. Dahl, I. Chorkendorff and J. K. Nørskov, Nat. Chem., 6, 320 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. N. Rui, Z. Wang, K. Sun, J. Ye, Q. Ge and C. Liu, Appl. Catal. B Environ., 218, 488 (2017).

    Article  CAS  Google Scholar 

  12. X. Yang, S. Kattel, S. D. Senanayake, J. A. Boscoboinik, X. Nie, J. Graciani, J. A. Rodriguez, P. Liu, D. J. Stacchiola and J. G. Chen, J. Am. Chem. Soc., 137, 10104 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. S. Kattel, P. J. Ramírez, J. G. Chen, J. A. Rodriguez and P. Liu, Science, 355, 1296 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. J. Schumann, T. Lunkenbein, A. Tarasov, N. Thomas, R. Schlögl and M. Behrens, ChemCatChem, 6, 2889 (2014).

    Article  CAS  Google Scholar 

  15. G. Bonura, M. Cordaro, C. Cannilla, F. Arena and F. Frusteri, Appl. Catal. B Environ., 152, 152 (2014).

    Article  CAS  Google Scholar 

  16. M. K. Koh, Y. J. Wong, S. P. Chai and A. R. Mohamed, J. Ind. Eng. Chem., 62, 156 (2018).

    Article  CAS  Google Scholar 

  17. B. Hu, Y. Yin, G. Liu, S. Chen, X. Hong and S. C. E. Tsang, J. Catal., 359, 17 (2018).

    Article  CAS  Google Scholar 

  18. J. Xiao, D. Mao, X. Guo and J. Yu, Appl. Surf. Sci., 338, 146 (2015).

    Article  CAS  Google Scholar 

  19. M. Tamura, T. Kitanaka, Y. Nakagawa and K. Tomishige, ACS Catal., 6, 376 (2016).

    Article  CAS  Google Scholar 

  20. X. An, J. Li, Y. Zuo, Q. Zhang, D. Wang and J. Wang, Catal. Lett., 118, 264 (2007).

    Article  CAS  Google Scholar 

  21. L. Liu and A. Corma, Chem. Rev., 118, 4981 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. M. B. Boucher, B. Zugic, G. Cladaras, J. Kammert, M. D. Marcinkowski, T. J. Lawton, E. C. H. Sykes and M. Flytzani-Stephanopoulos, Phys. Chem. Chem. Phys., 15, 12187 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. X. Guo, G. Fang, G. Li, H. Ma, H. Fan, L. Yu, C. Ma, X. Wu, D. Deng, M. Wei, D. Tan, R. Si, S. Zhang, J. Li, L. Sun, Z. Tang, X. Pan and X. Bao, Science, 344, 616 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. M. M.-J. Li, C. Chen, T. Ayvali, H. Suo, J. Zheng, I. Teixeira, L. Ye, H. Zou, D. O’Hare and S. C. E. Tsang, ACS Catal., 8, 4390 (2018).

    Article  CAS  Google Scholar 

  25. C. Jeong and Y. W. Suh, Catal. Today, 265, 254 (2016).

    Article  CAS  Google Scholar 

  26. Z. Y. Ma, C. Yang, W. Wei, W. H. Li and Y. H. Sun, J. Mol. Catal. A Chem., 231, 75 (2005).

    Article  CAS  Google Scholar 

  27. N. J. Venkatesha and S. Ramesh, Ind. Eng. Chem. Res., 57, 1506 (2018).

    Article  CAS  Google Scholar 

  28. S. Abelló, F. Medina, D. Tichit, J. Pérez-Ramírez, J. C. Groen, J. E. Sueiras, P. Salagre and Y Cesteros, Chem. — A Eur. J., 11, 728 (2005).

    Article  CAS  Google Scholar 

  29. O. Aschenbrenner, P. McGuire, S. Alsamaq, J. Wang, S. Supasitmongkol, B. Al-Duri, P. Styring and J. Wood, Chem. Eng. Res. Des., 89, 1711 (2011).

    Article  CAS  Google Scholar 

  30. N. D. Hutson, S. A. Speakman and E. A. Payzant, Chem. Mater., 16, 4135 (2004).

    Article  CAS  Google Scholar 

  31. X. Fang, Y. Men, F. Wu, Q. Zhao, R. Singh, P. Xiao, T. Du and P. A. Webley, J. CO2Util., 29, 57 (2019).

    Article  CAS  Google Scholar 

  32. S. Saha and S. B. Abd Hamid, RSC Adv., 7, 9914 (2017).

    Article  CAS  Google Scholar 

  33. Y. Zhang, C. Chen, X. Lin, D. Li, X. Chen, Y. Zhan and Q. Zheng, Int. J. Hydrogen Energy, 39, 3746 (2014).

    Article  CAS  Google Scholar 

  34. X. Guo, D. Mao, G. Lu, S. Wang and G. Wu, Catal. Commun., 12, 1095 (2011).

    Article  CAS  Google Scholar 

  35. A. Dandekar and M. A. Vannice, J. Catal., 178, 62 (1998).

    Article  Google Scholar 

  36. F. Arena, G. Italiano, K. Barbera, S. Bordiga, G. Bonura, L. Spadaro and F. Frusteri, Appl. Catal. A Gen., 350, 16 (2008).

    Article  CAS  Google Scholar 

  37. Y. Hua, X. Guo, D. Mao, G. Lu, G. L. Rempel and F. T. T. Ng, Appl. Catal. A Gen., 540, 68 (2017).

    Article  CAS  Google Scholar 

  38. T. Phongamwong, U. Chantaprasertporn, T. Witoon, T. Numpilai, Y. Poo-arporn, W. Limphirat, W. Donphai, P. Dittanet, M. Chareonpanich and J. Limtrakul, Chem. Eng. J., 316, 692 (2017).

    Article  CAS  Google Scholar 

  39. X. Dong, F. Li, N. Zhao, F. Xiao, J. Wang and Y. Tan, Appl. Catal. B Environ., 191, 8 (2016).

    Article  CAS  Google Scholar 

  40. N. D. Hutson, S. A. Speakman and E. A. Payzant, Chem. Mater., 16, 4135 (2004).

    Article  CAS  Google Scholar 

  41. S. Asthana, C. Samanta, A. Bhaumik, B. Banerjee, R. K. Voolapalli and B. Saha, J. Catal., 334, 89 (2016).

    Article  CAS  Google Scholar 

  42. J. Y. Kim, J. A. Rodriguez, J. C. Hanson, A. I. Frenkel and P. L. Lee, J. Am. Chem. Soc., 125, 10684 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. T. Witoon, J. Chalorngtham, P. Dumrongbunditkul, M. Chareonpanich and J. Limtrakul, Chem. Eng. J., 293, 327 (2016).

    Article  CAS  Google Scholar 

  44. T. Witoon, N. Kachaban, W. Donphai, P. Kidkhunthod, K. Faungnawakij, M. Chareonpanich and J. Limtrakul, Energy Convers. Manag., 118, 21 (2016).

    Article  CAS  Google Scholar 

  45. P. Gao, F. Li, H. Zhan, N. Zhao, F. Xiao, W. Wei, L. Zhong and H. Wang, J. Catal., 298, 51 (2013).

    Article  CAS  Google Scholar 

  46. N. D. Hutson and B. C. Attwood, Adsorption, 14, 781 (2008).

    Article  CAS  Google Scholar 

  47. Z. Yong and A. E. Rodrigues, Energy Convers. Manag., 43, 1865 (2002).

    Article  CAS  Google Scholar 

  48. A. G. Sato, D. P. Volanti, D. M. Meira, S. Damyanova, E. Longo and J.M.C. Bueno, J. Catal., 307, 1 (2013).

    Article  CAS  Google Scholar 

  49. F. Frusteri, M. Cordaro, C. Cannilla and G. Bonura, Appl. Catal. B Environ., 162, 57 (2015).

    Article  CAS  Google Scholar 

  50. S. Patel and K. K. Pant, Chem. Eng. Sci., 62, 5436 (2007).

    Article  CAS  Google Scholar 

  51. L. C. Grabow and M. Mavrikakis, ACS Catal., 1, 365 (2011).

    Article  CAS  Google Scholar 

  52. X. Guo, D. Mao, G. Lu, S. Wang and G. Wu, J. Mol. Catal. A Chem., 345, 60 (2011).

    Article  CAS  Google Scholar 

  53. X.-M. Liu, G. Q. Lu, Z.-F. Yan and J. Beltramini, Ind. Eng. Chem. Res., 42, 6518 (2003).

    Article  CAS  Google Scholar 

  54. T. Witoon, T. Numpilai, T. Phongamwong, W. Donphai, C. Boonyuen, C. Warakulwit, M. Chareonpanich and J. Limtrakul, Chem. Eng. J., 334, 1781 (2018).

    Article  CAS  Google Scholar 

  55. K. Nishida, I. Atake, D. Li, T. Shishido, Y. Oumi, T. Sano and K. Takehira, Appl. Catal. A Gen., 337, 48 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the China Scholarship Council (No. 201606080053), the University of Melbourne and the Natural Science Foundation of Liaoning Province (No. 2020-BS-053). We acknowledge the Monash X-ray Platform (MXP) for XRD measurements and Monash Centre of Electron Microscopy (MCEM) for SEM-EDX analyses. We also acknowledge the Materials Characterisation and Fabrication Platform (MCFP) at the University of Melbourne and the Victorian Node of the Australian National Fabrication Facility (ANFF) for the HIM characterizations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Du or Paul A. Webley.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at u]http://www.springer.com/chemistry/journal/11814.

Electronic supplementary material

11814_2020_736_MOESM1_ESM.pdf

Highly dispersed Cu-ZnO-ZrO2 nanoparticles on hydrotalcite adsorbent as efficient composite catalysts for CO2 hydrogenation to methanol

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, X., Men, Y., Wu, F. et al. Highly dispersed Cu-ZnO-ZrO2 nanoparticles on hydrotalcite adsorbent as efficient composite catalysts for CO2 hydrogenation to methanol. Korean J. Chem. Eng. 38, 747–755 (2021). https://doi.org/10.1007/s11814-020-0736-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0736-6

Keywords

Navigation