Skip to main content

Advertisement

Log in

Research needs targeting direct air capture of carbon dioxide: Material & process performance characteristics under realistic environmental conditions

  • Invited Review Paper
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The extraction of CO2 from ambient air, or direct air capture (DAC), is a crucial negative CO2 emissions technology with great potential for contributing to the mitigation of global warming and climate change. However, nearly all published research on DAC has been conducted under indoor temperature conditions: 20 to 30 °C. In contrast, the future global implementation requires DAC to be operational across a wide expanse of geographical areas, in which the local temperatures can vary between −30 to 50 °C. Similarly, the absolute humidity can vary from ∼0 to 84 g/m3 in various locations. Due to the massive amount of air that would be processed, it may be impractical to preheat or dehumidify the air before the CO2 separation. Therefore, it is important to develop DAC materials with good performance at realistic outdoor conditions, especially at sub-ambient conditions: −30 to 20 °C. In addition to material development, system-level studies at sub-ambient conditions are also needed for the DAC processes to reach optimal designs, which may be very different from those at ambient conditions. In this perspective article, we first assess the literature to identify the technical gaps that need to be filled for DAC to be applicable at realistic outdoor conditions. We then suggest additional research directions needed for DAC to be viable under varied conditions from the perspective of materials and system designs. For materials, we discuss the expected physical and chemical property changes for the sorbents when the temperature or humidity reaches extremes within their range, and how that will impact performance. Similarly, for system design, we indicate how varied conditions will impact performance and how these changes will impact process optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Climate change: atmospheric carbon dioxide. Climate.gov. science & information for a climate-smart nation. https://www.climate.gov/news-features/understanding-climate/climate-change-atmo-spheric-carbon-dioxide (accessed on Aug 30th).

  2. Climate change: global temperature. Climate.gov. science & information for a climate-smart nation. https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature (accessed on Aug 30th).

  3. D. G. Huber and J. Gulledge, Extreme Weather and Climate Change Understanding the Link, Managing the Risk. Arlington: Pew Center on Global Climate Change (2011).

    Google Scholar 

  4. C. García-Robledo, E. K. Kuprewicz, C. L. Staines, T. L. Erwin and W J. Kress, Proc. Natl. Acad. Sci. U.S.A., 113, 680 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  5. C. Bässler, J. Müller, T. Hothorn, T. Kneib, F. Badeck and F. Dziock, Ecol. Indic., 10, 341 (2010).

    Article  Google Scholar 

  6. A. Cazenave, H. B. Dieng, B. Meyssignac, K. Von Schuckmann, B. Decharme and E. Berthier, Nat. Clim. Chang., 4, 358 (2014).

    Article  Google Scholar 

  7. S. Lefevre, Conserv. Physiol., 4 (2016).

  8. Y. Wang, L. Zhao, A. Otto, M. Robinius and D. Stolten, Energy Procedia, 114, 650 (2017).

    Article  CAS  Google Scholar 

  9. M. Kárászová, B. Zach, Z. Petrusová, V. Červenka, M. Bobák, M. Šyc and P. Izák, Sep. Purif. Technol., 238, 116448 (2020).

    Article  Google Scholar 

  10. L. Zou, Y. Sun, S. Che, X. Yang, X. Wang, M. Bosch, Q. Wang, H. Li, M. Smith, S. Yuan, Z. Perry and H. C. Zhou, Adv. Mater., 29, 1700229 (2017).

    Article  Google Scholar 

  11. X. Zhu, T. Ge, F. Yang and R. Wang, Renew. Sustain. Energy Rev., 137, 110651 (2021).

    Article  CAS  Google Scholar 

  12. X. Wei, V. Manovic and D. P. Hanak, Energy Convers. Manag., 221, 113143 (2020).

    Article  CAS  Google Scholar 

  13. O. Senneca, N. Vorobiev, A. Wütscher, F. Cerciello, S. Heuer, C. Wedler, R. Span, M. Schiemann, M. Muhler and V. Scherer, Fuel, 238, 173 (2019).

    Article  CAS  Google Scholar 

  14. Y. Zhang, D. Wang, Y. Pottimurthy, F. Kong, T. L. Hsieh, B. Sakadjian, C. Chung, C. Park, D. Xu, J. Bao, L. Velazquez-Vargas, M. Guo, P. Sandvik, S. Nadgouda, T. J. Flynn, A. Tong and L. S. Fan, Appl. Energy, 282, 116065 (2021).

    Article  CAS  Google Scholar 

  15. Y. Liu, L. Qin, Z. Cheng, J. W. Goetze, F. Kong, J. A. Fan and L. S. Fan, Nat. Commun., 10, 5503 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. H. E. Holmes, R. P. Lively and M. J. Realff, JACS Au., 1, 795 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. E. S. Sanz-Pérez, C. R. Murdock, S. A. Didas and C. W. Jones, Chem. Rev., 116, 11840 (2016).

    Article  PubMed  Google Scholar 

  18. M. M. J. de Jonge, J. Daemen, J. M. Loriaux, Z. J. N. Steinmann and M. A. J. Huijbregts, Int. J. Greenh. Gas Control, 80, 25 (2019).

    Article  CAS  Google Scholar 

  19. J. V. Veselovskaya, A. I. Lysikov, O. V. Netskina, D. V. Kuleshov and A. G. Okunev, Ind. Eng. Chem. Res., 59, 7130 (2020).

    Article  CAS  Google Scholar 

  20. Q. Liu, L. Ning, S. Zheng, M. Tao, Y. Shi and Y. He, Sci. Rep., 3, 2916 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  21. S. H. Pang, R. P. Lively and C. W. Jones, ChemSusChem., 11, 2628 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. O. Oloye and A. P. O’Mullane, ChemSusChem., 14, 1767 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. V. Gutknecht, S. Ó. Snæbjörnsdóttir, B. Sigfússon, E. S. Aradóttir and L. Charles, Energy Procedia, 146, 129 (2018).

    Article  CAS  Google Scholar 

  24. U. W. R. Siagian, A. Raksajati, N. F. Himma, K. Khoiruddin and I. G. Wenten, J. Nat. Gas Sci. Eng., 67, 172 (2019).

    Article  CAS  Google Scholar 

  25. U. Ulmer, T. Dingle, P. N. Duchesne, R. H. Morris, A. Tavasoli, T. Wood and G. A. Ozin, Nat. Commun., 10, 1 (2019).

    Article  CAS  Google Scholar 

  26. V. Ruuskanen, G. Givirovskiy, J. Elfving, P. Kokkonen, A. Karvinen, L. Järvinen, J. Sillman, M. Vainikka and J. Ahola, J. Clean. Prod., 278, 123423 (2021).

    Article  CAS  Google Scholar 

  27. J. M. Hanusch, I. P. Kerschgens, F. Huber, M. Neuburger and K. Gademann, Chem. Commun., 55, 949 (2019).

    Article  CAS  Google Scholar 

  28. Average annual temperature, Ecoclimax environmental notes. http://www.ecoclimax.com/2016/04/average-annual-temperature.html (accessed on Aug 30th).

  29. National Academies of Sciences Engineering and Medicine (NASEM), Negative emissions technologies and reliable sequestration: A research agenda, National Academies Press, Washington, DC (2019).

    Google Scholar 

  30. O. Shekhah, Y. Belmabkhout, K. Adil, P. M. Bhatt, A. J. Cairns and M. Eddaoudi, Chem. Commun., 51, 13595 (2015).

    Article  CAS  Google Scholar 

  31. J. Lincke, D. Lässig, J. Moellmer, C. Reichenbach, A. Puls, A. Moeller, R. Gläser, G. Kalies, R. Staudt and H. Krautscheid, Micropor. Mesopor. Mater., 142, 62 (2011).

    Article  CAS  Google Scholar 

  32. Y. Wang and M. D. LeVan, J. Chem. Eng. Data, 54, 2839 (2009).

    Article  CAS  Google Scholar 

  33. Y. K. Kim, G. M. Kim and J. W. Lee, J. Mater. Chem. A, 3, 10919 (2015).

    Article  CAS  Google Scholar 

  34. R. Pini, Micropor. Mesopor. Mater., 187, 40 (2014).

    Article  CAS  Google Scholar 

  35. M. Palomino, A. Corma, F. Rey and S. Valencia, Langmuir, 26, 1910 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. M. Guo, H. Wu, L. Lv, H. Meng, J. Yun, J. Jin and J. Mi, ACS Appl. Mater. Interfaces, 13, 21775 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. J. Elfving, C. Bajamundi, J. Kauppinen and T. Sainio, J. CO2 Util., 22, 270 (2017).

    Article  CAS  Google Scholar 

  38. Y. Miao, Z. He, X. Zhu, D. Izikowitz and J. Li, Chem. Eng. J., 426, 131875 (2021).

    Article  CAS  Google Scholar 

  39. H. T. Kwon, M. A. Sakwa-Novak, S. H. Pang, A. R. Sujan, E. W. Ping and C. W. Jones, Chem. Mater., 31, 5229 (2019).

    Article  CAS  Google Scholar 

  40. A. Goeppert, H. Zhang, M. Czaun, R. B. May, G. K. S. Prakash, G. A. Olah and S. R. Narayanan, ChemSusChem., 7, 1386 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. X. Xu, C. Song, J. M. Andresen, B. G. Miller and A. W. Scaroni, Energy Fuels, 16, 1463 (2002).

    Article  CAS  Google Scholar 

  42. T. M. McDonald, W. R. Lee, J. A. Mason, B. M. Wiers, C. S. Hong and J. R. Long, J. Am. Chem. Soc., 134, 7056 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. J. Elfving, C. Bajamundi and J. Kauppinen, Energy Procedia, 114, 6087 (2017).

    Article  CAS  Google Scholar 

  44. L. A. Darunte, T. Sen, C. Bhawanani, K. S. Walton, D. S. Sholl, M. J. Realff and C. W. Jones, Ind. Eng. Chem. Res., 58, 366 (2019).

    Article  CAS  Google Scholar 

  45. A. R. Sujan, D. R. Kumar, M. Sakwa-Novak, E. W. Ping, B. Hu, S. J. Park and C. W. Jones, ACS Appl. Polym. Mater., 1, 3137 (2019).

    Article  CAS  Google Scholar 

  46. A. Zhao, A. Samanta, P. Sarkar and R. Gupta, Ind. Eng. Chem. Res., 52, 6480 (2013).

    Article  CAS  Google Scholar 

  47. Y. Liu and X. Yu, Appl. Energy, 211, 1080 (2018).

    Article  CAS  Google Scholar 

  48. A. Heydari-Gorji and A. Sayari, Chem. Eng. J., 173, 72 (2011).

    Article  CAS  Google Scholar 

  49. R. Serna-Guerrero and A. Sayari, Chem. Eng. J., 161, 182 (2010).

    Article  CAS  Google Scholar 

  50. K. Ge, Q. Yu, S. Chen, X. Shi and J. Wang, Chem. Eng. J., 364, 328 (2019).

    Article  CAS  Google Scholar 

  51. L. Stevens, K. Williams, W. Y. Han, T. Drage, C. Snape, J. Wood and J. Wang, Chem. Eng. J., 215–216, 699 (2013).

    Article  Google Scholar 

  52. J. T. Anyanwu, Y. Wang and R. T. Yang, Ind. Eng. Chem. Res., 59, 7072 (2020).

    Article  CAS  Google Scholar 

  53. C. M. Zimmerman and W. J. Koros, J. Polym. Sci. Part B Polym. Phys., 37, 1251 (1999).

    Article  CAS  Google Scholar 

  54. R. P. Lively and M. J. Realff, AIChE J., 62, 3699 (2016).

    Article  CAS  Google Scholar 

  55. C. Drechsler and D. W. Agar, Comput. Chem. Eng., 126, 520 (2019).

    Article  CAS  Google Scholar 

  56. A. Sinha, L. A. Darunte, C. W. Jones, M. J. Realff and Y. Kawajiri, Ind. Eng. Chem. Res., 56, 750 (2017).

    Article  CAS  Google Scholar 

  57. V. Stampi-Bombelli, M. van der Spek and M. Mazzotti, Adsorption, 26, 1183 (2020).

    Article  CAS  Google Scholar 

  58. S. M. W. Wilson and F. H. Tezel, Ind. Eng. Chem. Res., 59, 8783 (2020).

    Article  CAS  Google Scholar 

  59. R. Zhao, L. Liu, L. Zhao, S. Deng and H. Li, J. CO2Util., 26, 388 (2018).

    Article  CAS  Google Scholar 

  60. T. S. Lee, J. H. Cho and S. H. Chi, Build. Environ., 92, 209 (2015).

    Article  Google Scholar 

  61. C. A. Grande, R. P. Ribeiro, E. L. Oliveira and A. E. Rodrigues, Energy Procedia, 1, 1219 (2009).

    Article  CAS  Google Scholar 

  62. T. Wang, K. S. Lackner and A. B. Wright, Phys. Chem. Chem. Phys., 15, 504 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. M. P. Lebedev, O. V. Startsev, A. K. Kychkin and V. V. Polyakov, Procedia Struct. Integr., 30, 76 (2020).

    Article  Google Scholar 

  64. M. N. Gibbins and D. J. Hoffman, Environmental Exposure Effects on Composite Materials for Commercial Aircraft, NASA Contract. Reports (1982).

  65. C. Rosu, H. Lin, L. Jiang, V. Breedveld and D. W. Hess, J. Colloid Interface Sci., 516, 202 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. X. Huang, N. Tepylo, V. Pommier-Budinger, M. Budinger, E. Bonaccurso, P. Villedieu and L. Bennani, Prog. Aerosp. Sci., 105, 74 (2019).

    Article  Google Scholar 

  67. N. Chanut, S. Bourrelly, B. Kuchta, C. Serre, J. S. Chang, P. A. Wright and P. L. Llewellyn, ChemSusChem., 10, 1543 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. A. Ö. Yazaydin, A. I. Benin, S. A. Faheem, P. Jakubczak, J. J. Low, R. W. Richard and R. Q. Snurr, Chem. Mater., 21, 1425 (2009).

    Article  CAS  Google Scholar 

  69. J. J. Lee, C. H. Chen, D. Shimon, S. E. Hayes, C. Sievers and C. W. Jones, J. Phys. Chem. C., 121, 23480 (2017).

    Article  CAS  Google Scholar 

  70. E. Soubeyrand-Lenoir, C. Vagner, J. W. Yoon, P. Bazin, F. Ragon, Y. K. Hwang, C. Serre, J. S. Chang and P. L. Llewellyn, J. Am. Chem. Soc., 134, 10174 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. F. Gao, Y. Li, Z. Bian, J. Hu and H. Liu, J. Mater. Chem. A, 3, 8091 (2015).

    Article  CAS  Google Scholar 

  72. G. Li, P. Xiao, P. Webley, J. Zhang, R. Singh and M. Marshall, Adsorption, 14, 415 (2008).

    Article  CAS  Google Scholar 

  73. A. C. Kizzie, A. G. Wong-Foy and A. J. Matzger, Langmuir, 27, 6368 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. J. Liu, Y. Wang, A. I. Benin, P. Jakubczak, R. R. Willis and M. D. LeVan, Langmuir, 26, 14301 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. D. G. Madden, H. S. Scott, A. Kumar, K. Chen, R. Sanii, A. Bajpai, M. Lusi, T. Curtin, J. J. Perry, M. J. Zaworotko and T. Curtin, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 375, 2084 (2017).

    Google Scholar 

  76. L. Joos, J. A. Swisher and B. Smit, Langmuir, 29, 15936 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. F. Brandani and D. M. Ruthven, Ind. Eng. Chem. Res., 43, 8339 (2004).

    Article  CAS  Google Scholar 

  78. A. Kumar, D. G. Madden, M. Lusi, K. J. Chen, E. A. Daniels, T. Curtin, J. J. Perry and M. J. Zaworotko, Angew. Chem. — Int. Ed., 54, 14372 (2015).

    Article  CAS  Google Scholar 

  79. Y. Wang and M. D. LeVan, J. Chem. Eng. Data, 55, 3189 (2010).

    Article  CAS  Google Scholar 

  80. N. C. Burtch, H. Jasuja and K. S. Walton, Chem. Rev., 114, 10575 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. P. Silva, S. M. F. Vilela, J. P. C. Tomé and F. A. Almeida Paz, Chem. Soc. Rev., 44, 6774 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. K. Tan, N. Nijem, Y. Gao, S. Zuluaga, J. Li, T. Thonhauser and Y. J. Chabal, CrystEngComm., 17, 247 (2015).

    Article  CAS  Google Scholar 

  83. T. M. McDonald, J. A. Mason, X. Kong, E. D. Bloch, D. Gygi, A. Dani, V. Crocellà, F. Giordanino, S. O. Odoh, W. S. Drisdell, B. Vlaisavljevich, A. L. Dzubak, R. Poloni, S. K. Schnell, N. Planas, K. Lee, T. Pascal, L. F. Wan, D. Prendergast, J. B. Neaton, B. Smit, J. B. Kortright, L. Gagliardi, S. Bordiga, J. A. Reimer and J. R. Long, Nature, 519, 303 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Y. H. Lee, Y. Kwon, C. Kim, Y. E. Hwang, M. Choi, Y. Park, A. Jamal and D. Y. Koh, JACS Au., 1, 1198 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. E. J. Kim, R. L. Siegelman, H. Z. Jiang, A. C. Forse, J. H. Lee, J. D. Martell, P. J. Milner, J. M. Falkowski, J. B. Neaton, J. A. Reimer, S. C. Weston and J. R. Long, Science, 369, 392 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. P. Nugent, E. G. Giannopoulou, S. D. Burd, O. Elemento, E. G. Giannopoulou, K. Forrest, T. Pham, S. Ma, B. Space, L. Wojtas, M. Eddaoudi and M. J. Zaworotko, Nature, 495, 80 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. D. Xu, J. Zhang, G. Li, P. Xiao, P. Webley and Y. C. Zhai, Ranliao Huaxue Xuebao/Journal Fuel Chem. Technol., 39, 169 (2011).

    Article  Google Scholar 

  88. J. M. Kolle, M. Fayaz and A. Sayari, Chem. Rev., 121, 7280 (2021).

    Article  CAS  PubMed  Google Scholar 

  89. T. L. Donaldson and Y. N. Nguyen, Ind. Eng. Chem. Fundam., 19, 260 (1980).

    Article  CAS  Google Scholar 

  90. A. Sayari and Y. Belmabkhout, J. Am. Chem. Soc., 132, 6312 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. H. Zhang, A. Goeppert, G. A. Olah and G. K. S. Prakash, J. CO2 Util., 19, 91 (2017).

    Article  CAS  Google Scholar 

  92. S. Choi, J. H. Drese and C. W. Jones, ChemSusChem., 2, 796 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. P. Bollini, S. A. Didas and C. W. Jones, J. Mater. Chem., 21, 15100 (2011).

    Article  CAS  Google Scholar 

  94. Z. Bacsik, N. Ahlsten, A. Ziadi, G. Zhao, A. E. Garcia-Bennett, B. Martín-Matute and N. Hedin, Langmuir, 27, 11118 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. M. W. Hahn, M. Steib, A. Jentys and J. A. Lercher, J. Phys. Chem. C, 119, 4126 (2015).

    Article  CAS  Google Scholar 

  96. K. Li, J. D. Kress and D. S. Mebane, J. Phys. Chem. C, 120, 23683 (2016).

    Article  CAS  Google Scholar 

  97. M. Sardo, R. Afonso, J. Juźków, M. Pacheco, M. Bordonhos, M. L. Pinto, J. R. Gomes and L. Mafra, J. Mater. Chem. A, 9, 5542 (2021).

    Article  CAS  Google Scholar 

  98. S. A. Didas, M. A. Sakwa-Novak, G. S. Foo, C. Sievers and C. W. Jones, J. Phys. Chem. Lett., 5, 4194 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. C. H. Chen, D. Shimon, J. J. Lee, F. Mentink-Vigier, I. Hung, C. Sievers, C. W. Jones and S. E. Hayes, J. Am. Chem. Soc., 140, 8648 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. A. Goeppert, M. Czaun, R. B. May, G. K. S. Prakash, G. A. Olah and S. R. Narayanan, J. Am. Chem. Soc., 133, 20164 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. D. V. Quang, A. Dindi, A. V. Rayer, N. El Hadri, A. Abdulkadir and M. R. M. Abu-Zahra, Greenh. Gases Sci. Technol., 5, 91 (2015).

    Article  CAS  Google Scholar 

  102. A. R. Sujan, S. H. Pang, G. Zhu, C. W. Jones and R. P. Lively, ACS Sustain. Chem. Eng., 7, 5264 (2019).

    Article  CAS  Google Scholar 

  103. A. Sayari, Q. Liu and P. Mishra, ChemSusChem., 9, 2796 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. C. Gebald, J. A. Wurzbacher, A. Borgschulte, T. Zimmermann and A. Steinfeld, Environ. Sci. Technol., 48, 2497 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. R. P. Wijesiri, G. P. Knowles, H. Yeasmin, A. F. Hoadley and A. L. Chaffee, Ind. Eng. Chem. Res., 58, 3293 (2019).

    Article  CAS  Google Scholar 

  106. G. Rim, T. G. Feric, T. Moore and A. H. A. Park, Adv. Funct. Mater., 31, 2010047 (2021).

    Article  CAS  Google Scholar 

  107. J. A. Wurzbacher, C. Gebald and A. Steinfeld, Energy Environ. Sci., 4, 3584 (2011).

    Article  CAS  Google Scholar 

  108. J. A. Wurzbacher, C. Gebald, N. Piatkowski and A. Steinfeld, Environ. Sci. Technol., 46, 9191 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. J. A. Wurzbacher, C. Gebald, S. Brunner and A. Steinfeld, Chem. Eng. J., 283, 1329 (2016).

    Article  CAS  Google Scholar 

  110. C. Drechsler and D. W. Agar, Energy, 192, 116587 (2020).

    Article  CAS  Google Scholar 

  111. Y. I. Matveev, V. Y. Grinberg and V. B. Tolstoguzov, Food Hydrocoll., 14, 425 (2000).

    Article  CAS  Google Scholar 

  112. Y. Fan, Y. Labreche, R. P. Lively, C. W. Jones and W. J. Koros, AIChE J., 60, 3878 (2014).

    Article  CAS  Google Scholar 

  113. G. Qi, L. Fu and E. P. Giannelis, Nat. Commun., 5, 5796 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. A. Koutsianos, A. R. Barron and E. Andreoli, J. Phys. Chem. C, 121, 21772 (2017).

    Article  CAS  Google Scholar 

  115. C. L. Hou, Y. S. Wu, Y. Z. Jiao, J. Huang, T. Wang, M. X. Fang and H. Zhou, J. Zhejiang Univ. Sci. A., 18, 819 (2017).

    Article  CAS  Google Scholar 

  116. C. Van Der Giesen, C. J. Meinrenken, R. Kleijn, B. Sprecher, K. S. Lackner and G. J. Kramer, Environ. Sci. Technol., 51, 1024 (2017).

    Article  CAS  PubMed  Google Scholar 

  117. L. A. Darunte, Y. Terada, C. R. Murdock, K. S. Walton, D. S. Sholl and C. W. Jones, ACS Appl. Mater. Interfaces, 9, 17042 (2017).

    Article  CAS  PubMed  Google Scholar 

  118. N. McQueen, K. V. Gomes, C. McCormick, K. Blumanthal, M. Pisciotta and J. Wilcox, Prog. Energy, 3, 032001 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Jason Lee for providing the initial sub-ambient CO2 adsorption database and the Georgia Tech Direct Air Capture Center, DirACC. The authors also thank David Elenowitz for fruitful discussions concerning all aspects of DAC. The authors furthermore acknowledge all researchers who have contributed to the development of DAC technology to date. This research was supported by National Energy Technology Laboratory of the U.S. Department of Energy, under award no. DE-FE-FE0031952, and Zero Carbon Partners, LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher W. Jones.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Christopher W. Jones Georgia Institute of Technology School of Chemical & Biomolecular Engineering

Professor Jones is the John F. Brock III School Chair and Professor of Chemical & Biomolecular Engineering at Georgia Tech. He joined Georgia Tech as an Assistant Professor in 2000 and was promoted to Associate Professor in 2005 and Professor in 2008. He served as Associate Vice President for Research from 2013–2019. Dr. Jones leads a research group that works on materials, catalysis and adsorption. He is known for his extensive work on materials that extract CO2 from ultra-dilute mixtures such as ambient air, which are key components of direct air capture (DAC) technologies. He served on the US National Academies Consensus Study on Negative Emissions Technologies and Reliable Sequestration in 2017–2018, focusing on DAC. He was the founding Editor-in-Chief of the journal, ACS Catalysis, and currently serves as the founding Editor-in-Chief of JACS Au. Jones is a fellow of the ACS and AAAS.

Supporting Information

11814_2021_976_MOESM1_ESM.pdf

Research needs targeting direct air capture of carbon dioxide: Material & process performance characteristics under realistic environmental conditions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, F., Rim, G., Song, M. et al. Research needs targeting direct air capture of carbon dioxide: Material & process performance characteristics under realistic environmental conditions. Korean J. Chem. Eng. 39, 1–19 (2022). https://doi.org/10.1007/s11814-021-0976-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0976-0

Keywords

Navigation