Skip to main content
Log in

Identification by deep sequencing and profiling of conserved and novel hickory microRNAs involved in the graft process

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) play a vital role in plant development and growth through negative regulation of post-transcriptional gene expression. Carya cathayensis (hickory) is an important species for dried nuts and oil in China, with high nutritional and economic value. The graft technique is an important strategy for hickory cultivation. To understand the role of miRNAs involved in the hickory graft process, we constructed three small ribonucleic acid (RNA) libraries from hickory rootstock (2 years old) and scion (1 year old) at 0, 7, and 14 days post-graft. Sequence analysis of the three libraries identified 21 conserved miRNAs belonging to 13 families, and 10 novel and 8 potentially novel miRNAs belonging to 15 families. Among these miRNAs, 12 miRNAs were differentially expressed during the graft process in hickory and two-thirds were downregulated. Quantitative real-time polymerase chain reaction validated that 14 miRNAs and their expression trends were similar to the results obtained by Solexa sequencing. Further, a total of 89 target genes for conserved and 26 target genes for novel miRNAs were predicted. This study will help in understanding the roles and regulatory modes of miRNAs involvement in the hickory graft process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221

    Article  CAS  PubMed  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2005) MicroRNAs and their regulatory roles in plants and animals. Dev Biol 283:575

    Article  Google Scholar 

  • Basile B, Marsal J, DeJong TM (2003) Daily shoot extension growth of peach trees growing on rootstocks that reduce scion growth is related to daily dynamics of stem water potential. Tree Physiol 23:695–704

    Article  PubMed  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • Chen R, Hu Z, Zhang H (2009) Identification of microRNAs in wild soybean (Glycine soja). J Integr Plant Biol 51:1071–1079

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Zhang Z, Liu D, Zhang K, Li A, Mao L (2010) SQUAMOSA promoter-binding protein-like transcription factors: star players for plant growth and development. J Integr Plant Biol 52:946–951

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Ren Y, Zhang Y, Xu J, Sun F, Zhang Z, Wang Y (2012a) Genome-wide identification and expression analysis of heat-responsive and novel microRNAs in Populus tomentosa. Gene 504:160–165

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Ren Y, Zhang Y, Xu J, Zhang Z, Wang Y (2012b) Genome-wide profiling of novel and conserved Populus microRNAs involved in pathogen stress response by deep sequencing. Planta 235:873–883

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Zhang Y, Ren Y, Xu J, Zhang Z, Wang Y (2012c) Genome-wide identification of cold-responsive and new microRNAs in Populus tomentosa by high-throughput sequencing. Biochem Biophys Res Commun 417:892–896

    Article  CAS  PubMed  Google Scholar 

  • Davidson AL, Dassa E, Orelle C, Chen J (2008) Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72:317–364

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ernst HA, Olsen AN, Larsen S Lo, Leggio L (2004) Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Rep 5:297–303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS One 2:e219

    Article  PubMed Central  PubMed  Google Scholar 

  • Hafner M, Landgraf P, Ludwig J, Rice A, Ojo T, Lin C, Holoch D, Lim C, Tuschl T (2008) Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods 44:3–12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang YJ, Liu LL, Huang JQ, Wang ZJ, Chen FF, Zhang QX, Zheng BS, Chen M (2013) Using of transcriptome sequencing to understand the pistillate flowering in hickory (Carya cathayensis Sarg.). BMC Genom 14(691):1471–2164

    Google Scholar 

  • Jensen PJ, Rytter J, Detwiler EA, Travis JW, McNellis TW (2003) Rootstock effects on gene expression patterns in apple tree scions. Plant Mol Biol 53:493–511

    Article  CAS  PubMed  Google Scholar 

  • Johnson C, Kasprzewska A, Tennessen K, Fernandes J, Nan GL, Walbot V, Sundaresan V, Vance V, Bowman LH (2009) Clusters and superclusters of phased small RNAs in the developing inflorescence of rice. Genome Res 19:1429–1440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jones PM, George AM (2004) The ABC transporter structure and mechanism: perspectives on recent research. Cell Mol Life Sci 61:682–699

    Article  CAS  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Canio W, Kessler S, Sinha N (2001) Developmental changes due to long-distance movement of a homeobox fusion transcript in tomato. Science 293:287–289

    Article  CAS  PubMed  Google Scholar 

  • Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24:713–714

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Sun YH, Shi R, Clark C, Li L, Chiang VL (2005) Novel and mechanical stress-responsive MicroRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17:2186–2203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu S, Sun YH, Chiang VL (2008) Stress-responsive microRNAs in Populus. Plant J 55:131–151

    Article  CAS  PubMed  Google Scholar 

  • Mallory AC, Vaucheret H (2006) Functions of microRNAs and related small RNAs in plants. Nat Genet 38(Suppl):S31–S36

    Article  CAS  PubMed  Google Scholar 

  • Mallory AC, Mlotshwa S, Bowman LH, Vance VB (2003) The capacity of transgenic tobacco to send a systemic RNA silencing signal depends on the nature of the inducing transgene locus. Plant J 35:82–92

    Article  CAS  PubMed  Google Scholar 

  • Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288:911–940

    Article  CAS  PubMed  Google Scholar 

  • Meyers BC, Axtell MJ et al (2008) Criteria for annotation of plant MicroRNAs. Plant Cell 20:3186–3190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moxon S, Jing R, Szittya G, Schwach F et al (2008) Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res 18:1602–1609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ohtani M, Nishikubo N, Xu B et al (2011) A NAC domain protein family contributing to the regulation of wood formation in poplar. Plant J 67:499–512

    Article  CAS  PubMed  Google Scholar 

  • Puzey JR, Kramer EM (2009) Identification of conserved Aquilegia coerulea microRNAs and their targets. Gene 448:46–56

    Article  CAS  PubMed  Google Scholar 

  • Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8:517–527

    Article  CAS  PubMed  Google Scholar 

  • Shi R, Chiang VL (2005) Facile means for quantifying microRNA expression by real-time PCR. Biotechniques 39:519–525

    Article  CAS  PubMed  Google Scholar 

  • Wang ZJ, Huang JQ, Huang YJ, Li Z, Zheng BS (2012) Discovery and profiling of novel and conserved microRNAs during flower development in Carya cathayensis via deep sequencing. Planta 236:613–621

    Article  CAS  PubMed  Google Scholar 

  • Wong CE, Zhao YT, Wang XJ, Croft L, Wang ZH, Haerizadeh F, Mattick JS, Singh MB, Carroll BJ, Bhalla PL (2011) MicroRNAs in the shoot apical meristem of soybean. J Exp Bot 62:2495–2506

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhang S, Han S, Wu T, Li X, Li W, Qi L (2012) Genome-wide identification of microRNAs in larch and stage-specific modulation of 11 conserved microRNAs and their targets during somatic embryogenesis. Planta 236:647–657

    Article  CAS  PubMed  Google Scholar 

  • Zheng BS, Chu HL, Jin SH, Huang YJ, Wang ZJ, Chen M, Huang JQ (2010) cDNA-AFLP analysis of gene expression in hickory (Carya cathayensis) during graft process. Tree Physiol 30:297–303

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Science Foundation of China (31070604, 31270716 and 31470683); Zhejiang Provincial Natural Science Foundation for Distinguished Young Scholar (LR13C160001); Pre-research Foundation of Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University; Key Project of Chinese Ministry of Education (212072); Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry ([2009]1341); National High Technology Research and Development Program of China (863 Program) (2013AA102605); initial project of Major State Basic Research Program of China (2011CB111510); Fruit Innovation Team Project of Zhejiang Province (2009R50033). We would like to thank the reviewers for their helpful comments and proposals on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingsong Zheng.

Additional information

X. Sima, B. Jiang, J. Fang and Y. He contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sima, X., Jiang, B., Fang, J. et al. Identification by deep sequencing and profiling of conserved and novel hickory microRNAs involved in the graft process. Plant Biotechnol Rep 9, 115–124 (2015). https://doi.org/10.1007/s11816-015-0349-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-015-0349-4

Keywords

Navigation