Skip to main content
Log in

Visual ecology of aphids—a critical review on the role of colours in host finding

  • Review Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

We review the rich literature on behavioural responses of aphids (Hemiptera: Aphididae) to stimuli of different colours. Only in one species there are adequate physiological data on spectral sensitivity to explain behaviour crisply in mechanistic terms. Because of the great interest in aphid responses to coloured targets from an evolutionary, ecological and applied perspective, there is a substantial need to expand these studies to more species of aphids, and to quantify spectral properties of stimuli rigorously. We show that aphid responses to colours, at least for some species, are likely based on a specific colour opponency mechanism, with positive input from the green domain of the spectrum and negative input from the blue and/or UV region. We further demonstrate that the usual yellow preference of aphids encountered in field experiments is not a true colour preference but involves additional brightness effects. We discuss the implications for agriculture and sensory ecology, with special respect to the recent debate on autumn leaf colouration. We illustrate that recent evolutionary theories concerning aphid–tree interactions imply far-reaching assumptions on aphid responses to colours that are not likely to hold. Finally we also discuss the implications for developing and optimising strategies of aphid control and monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • A’Brook J (1973) Observations on different methods of aphid trapping. Ann Appl Biol 74:263–277

    Google Scholar 

  • Adlerz WC, Everett PH (1968) Aluminum foil and white polyethylene mulches to repel aphids and control watermelon mosaic. J Econ Entomol 61:1276–1279

    Google Scholar 

  • Archetti M, Leather SR (2005) A test of the coevolution theory of autumn colours: colour preference of Rhopalosiphum padi on Prunus padus. Oikos 110:339–343

    Google Scholar 

  • Arikawa K, Inokuma K, Eguchi E (1987) Pentachromatic visual system in a butterfly. Naturwissenschaften 74:297–298

    Google Scholar 

  • Auclair JL (1967) Effects of light and sugars on rearing the cotton aphid, Aphis gossypii, on a germ-free and holidic diet. J Insect Physiol 13:1247–1268

    CAS  Google Scholar 

  • Baldy C, Rabasse J-M (1983) Caractéristiques spectrales de pièges jaunes utilisés pour la capture des aphides. Agronomie 3:161–166

    Google Scholar 

  • Bauer-Dubau K, Scheurer S (1993) First reports of honey-dew-producing aphids (Aphidina: (Lachnidae)) on conifers, their prefered locations and abundance during 1992 in “Botanischer Garten Berlin”. Mitteilungen der Deutschen Gesellschaft für Allgemeine und Angewandte Entomologie (Germany) 9:715–719

  • Bigler F, Waldburger M, Frei G (1995) Vier Maisanbauverfahren 1990–1993—Krankheiten und Schädlinge. Agrarforschung 2(9):380–382

    Google Scholar 

  • Boiteau G (1990) Effect of trap color and size on relative efficiency of water-pan traps for sampling alate aphids (Homoptera: Aphididae) on potato. J Econ Entomol 83:937–942

    Google Scholar 

  • Briscoe A, Chittka L (2001) Evolution of color vision in insects. Annu Rev Entomol 46:471–510

    PubMed  CAS  Google Scholar 

  • Broadbent L (1949) Factors affecting the activity of alatae of the aphids Myzus persicae (Sulzer) and Brevicoryne brassicae (L.). Ann Appl Biol 36:40–62

    PubMed  CAS  Google Scholar 

  • Brown MW, Gleen DM, Wisiniewski ME (1991) Functional and anatomical disruption of apple roots by the woolly apple aphid (Homoptera : Aphididae). J Econ Entomol 84:1823–1826

    Google Scholar 

  • Brust GE (2000) Reflective and black mulch increase yield in pumpkins under virus disease pressure. J Econ Entomol 93:828–833

    PubMed  CAS  Google Scholar 

  • Budnik K, Laing MD, da Graça JV (1996) Reduction of yield losses in pepper crops caused by Potato Virus Y in KwaZulu-Natal, South Africa, using plastic mulch and yellow sticky traps. Phytoparasitica 24:119–124

    Google Scholar 

  • Burrows PM, Barnett OW, Zimmerman MT (1983) Color attraction and perception in Macrosiphon euphorbae. Can J Zool 61:202–210

    Article  Google Scholar 

  • Campbell CAM (1991) Response of Phorodon humuli to yellow and green hop foliar colours. Entomol Exp Appl 60:95–99

    Google Scholar 

  • Chapman RF, Bernays EA, Simpson SJ (1981) Attraction and repulsion of the aphid, Cavariella aegopodii by plant odours. J Chem Ecol 7:881–888

    Google Scholar 

  • Chittka L (1996a) Does bee colour vision predate the evolution of flower colour? Naturwissenschaften 83:136–138

    CAS  Google Scholar 

  • Chittka L (1996b) Optimal sets of color receptors and opponent process for coding of natural objects in insect vision. J Theoret Biol 181:179–196

    Google Scholar 

  • Chittka L, Waser NM (1997) Why red flowers are not invisible for bees. Israelian J Plant Sci 45:69–183

    Google Scholar 

  • Chittka L, Wells H (2004) Color vision in bees: mechanisms, ecology and evolution. In: Prete F (ed) How simple nervous systems create complex perceptual worlds. MIT Press, Boston, pp 165–191

    Google Scholar 

  • Chittka L, Beier W, Hertel H, Steinmann E, Menzel R (1992) Opponent colour coding is a universal strategy to evaluate the photoreceptor inputs in hymentoptera. J Compar Physiol A 170:545–563

    CAS  Google Scholar 

  • Daiber CC, Donaldson JMI (1976) Watermelon mosaic virus in vegetable marrows: the effect of aluminium foil on the vector. Phytophylactica 8:85–86

    Google Scholar 

  • Dartnall HJA, Bowmaker JK, Mollon JD (1983) Human visual pigments: microspectrophotometric results from eyes of seven persons. Proc Royal Soc Lond B 220:115–130

    CAS  Google Scholar 

  • Dickson RC, Laird RF (1966) Aluminum foil to protect melons from watermelon mosaic virus. Plant Disease Rep 50:305

    Google Scholar 

  • Dilawari VK, Atwal AS (1989) Response of mustard aphid Lipaphis erysimi (Kalt.) to allylisothiocyanate. J Insect Sci 2:103–108

    Google Scholar 

  • Dixon AFG (1971) The life cycle and host preferences of the bird cherry-oat aphid, Rhopalosiphum padi L., and their bearing on the theories of host alternation in aphids. Ann Appl Biol 68:135–147

    PubMed  CAS  Google Scholar 

  • Dixon AFG (1985) Aphid ecology. Blackie, Glasgow 157 pp

  • Dominy NJ, Lucas PW, Ramsden LW, Riba-Hernandez P, Stoner KE, Turner IM (2002) Why are young leaves red? Oikos 98:163–176

    Google Scholar 

  • Döring TF, Skorupski P (2007) Host and non-host leaves in the colour space of the colorado potato beetle (Coleoptera: Chrysomelidae). Entomol Gen (in press)

  • Döring TF, Kirchner SM, Kühne S, Saucke H (2004) Response of alate aphids to green targets on differently coloured backgrounds. Entomol Exp Appl 113:53–62

    Google Scholar 

  • Dyer A, Neumeyer C (2005) Simultaneous and successive colour discrimination in the honeybee (Apis mellifera). J Compar Physiol A 191:547–557

    Google Scholar 

  • Eastop VF (1955) Selection of aphid species by different kinds of insect traps. Nature 176:936

    Google Scholar 

  • Eulitz EG (1977) Aluminium foil for the control of watermelon mosaic in vegetable marrow. Phytophylactica 9:23–23

    Google Scholar 

  • Fokkema NJ, Riphagen I, Poot RJ, de Jong C (1983) Aphid honeydew, a potential stimulant of Cochliobolus sativus and Septoria nodorum and the competitive role of saprophytic mycoflora. Trans Brit Mycol Soc 81:355–363

    Google Scholar 

  • Goldsmith TH (1991) The evolution of visual pigments and colour vision. In: Gouras P (ed) Vision and visual dysfunction. Macmillan, Houndsmills, UK, pp 62–89

    Google Scholar 

  • Goldsmith TH (1994) Ultraviolet receptors and color vision: evolutionary implications and a dissonance of paradigms. Vision Res 34:1479–1487

    PubMed  CAS  Google Scholar 

  • Gonzalez D, Rawlins WA (1968) Aphid sampling efficiency of Möericke Traps affected by height and background. J Econ Entomol 61:109–114

    Google Scholar 

  • Hamilton WD, Brown SP (2001) Autumn tree colours as a handicap signal. Proc Roy Soc B 268:1489–1493

    CAS  Google Scholar 

  • Hardie J (1989) Spectral sensitivity for targeted flight in the black bean aphid, Aphis fabae. J Insect Physiol 35:619–626

    Google Scholar 

  • Hardie J, Nunes MV (2001) Aphid photoperiodic clocks. J Insect Physiol 47:821–832

    CAS  Google Scholar 

  • Hardie J, Isaacs R, Pickett JA, Wadhams LJ, Woodcock CM (1994) Methyl salicylate and (-)-(1R,5S)-myrtenal are plant-derived repellents for black bean aphid, Aphis fabae Scop. (Homoptera: Aphididae). J Chem Ecol 20:2847–2855

    CAS  Google Scholar 

  • Hardie J, Storer JR, Cook FJ, Campbell CAM, Wadhams LJ, Lilley R, Peace L (1996) Sex pheromone and visual trap interactions in mate location strategies and aggregation by host alternating-aphids in the field. Physiol Entomol 21:97–106

    CAS  Google Scholar 

  • Heathcote GD (1957) The comparison of yellow cylindrical, flat and water traps, and of Johnson suction traps, for sampling aphids. Ann Appl Biol 45:133–139

    Google Scholar 

  • Heathcote GD (1968) Protection of sugar beet stecklings against aphids and viruses by cover crops and aluminum foil. Plant Pathol 17:158–161

    Google Scholar 

  • Hennig E (1963) Zum Probieren oder sogenannten Probesaugen der Schwarzen Bohnenlaus (Aphis fabae Scop.). Entomol Exp Appl 6:326–336

    Google Scholar 

  • Hermoso A, Pérez E, Carbonell EA, Real V (1998) Comparación de sistemas de captura de áfidos (Homoptera, Aphidinea) en cítricos. Investigación Agraria: Producción y Protección Vegetal 13:121–128

    Google Scholar 

  • Hodgson CJ, Elbakiet IB (1985) Effect of colour and shape of `target’ hosts on the orientation of emigrating adult apterous Myzus persicae in the laboratory. Entomol Exp Appl 38:267–272

    Google Scholar 

  • Holopainen JK, Peltonen P (2002) Bright autumn colours of deciduous trees attract aphids: nutrient retranslocation hypothesis. Oikos 99:184–188

    Google Scholar 

  • Johnson B (1958) Factors affecting the locomotor and settling responses of aphids. Animal Behav 6:9–26

    Google Scholar 

  • Johnson GV, Bing A, Smith FF (1967) Reflective surfaces used to repel dispersing aphids and reduce spread ot aphid-borne cucumber mosaic virus in gladiolus plantings. J Econ Entomol 60:16–19

    Google Scholar 

  • Jones FR, Chapman RK (1968) Aluminium foil and other reflective surfaces to manipulate the movement of aphid vectors of plant viruses. Proc Entomol Soc Am, North Central Branch 23:146–148

    Google Scholar 

  • Judkins WP, Wander IW (1950) Correlation between leaf colour, leaf nitrogen content, and growth of apple, peach and grape plants. Plant Physiol 25:78–85

    PubMed  CAS  Google Scholar 

  • Karl E (1991) Einsatz einer Saugfalle zur Überwachung der Flugaktivität von Getreideblattläusen (Homoptera Aphidinea: Aphididae). Entomol Gen 16:161–166

    Google Scholar 

  • Kennedy JS (1950) Aphid migration and the spread of plant viruses. Nature 165:1024–1025

    PubMed  CAS  Google Scholar 

  • Kennedy JS (1966) The balance between antagonistic induction and depression of flight activity in Aphis fabae Scopoli. J Exp Biol 45:215–228

    Google Scholar 

  • Kennedy JS, Booth CO, Kershaw WJS (1959a) Host finding by aphids in the field—I. Gynoparae of Myzus persicae (Sulzer). Ann Appl Biol 47:410–423

    Google Scholar 

  • Kennedy JS, Booth CO, Kershaw WJS (1959b) Host finding by aphids in the field—II. Aphis fabae Scop. (Gynoparae) and Brevicoryne brassicae L.; with a re-appraisal of the role of host-finding behaviour in virus spread. Ann Appl Biol 17:424–444

    Google Scholar 

  • Kennedy JS, Booth CO, Kershaw WJS (1961) Host finding by aphids in the field—III. Visual attraction. Ann Appl Biol 49:1–21

    Article  Google Scholar 

  • Kieckhefer RW, Dickman DA, Miller EL (1976) Color responses of cereal aphids. Ann Entomol Soc Am 69:721–724

    Google Scholar 

  • Kirchner SM, Döring TF, Saucke H (2005) Evidence for trichromacy in the green peach aphid Myzus persicae (Homoptera: Aphididae). J Insect Physiol 51:1266–1260

    Google Scholar 

  • Kring JB (1964) New ways to repel aphids. Front Plant Sci 17:6–7

    Google Scholar 

  • Kring JB (1967) Alighting of aphids on colored cards in a flight chamber. J Econ Entomol 60:1207–1210

    Google Scholar 

  • Kring JB (1970) Determining the number of aphids over reflective surfaces. J Econ Entomol 63:1350–1353

    Google Scholar 

  • Kring JB (1972) Flight behaviour of aphids. Annu Rev Entomol 17:461–492

    Google Scholar 

  • Kumar P, Poehling H-M (2006) UV-blocking plastic films and nets influence vectors and virus transmission on greenhouse tomatoes in the humid tropics. Environ Entomol 35:1069–1082

    Article  Google Scholar 

  • Lehmhus J (2001) Auswirkungen von Untersaaten in Weißkohlkulturen auf Populationsdynamik der Schadinsekten, die Unkräuter und den Ertrag. PhD-Thesis, University of Hannover, Germany

  • Liburd OE, Casagrande RA, Alm SR (1998) Evaluation of various color hydromulches and weed fabric on broccoli insect populations. J Econ Entomol 91:256–262

    Google Scholar 

  • Lin J-T, Hwang P-C, Tung L-C (2002) Visual organization and spectral sensitivity of larval eyes in the moth Trabala vishnou Lefebur (Lepidoptera: Lasiocampidae). Zool Stud 41:366–375

    Google Scholar 

  • Lythgoe JN (1979) The ecology of vision. Clarendon Press, Oxford, 244 pp

  • Manetas Y (2006) Why some leaves are anthocyanic and why most anthocyanic leaves are red? Flora 201:163–177

    Google Scholar 

  • Menzel R (1979) Spectral sensitivity and color vision in invertebrates. In: Autrum H (ed) Comparative physiology and evolution of vision in invertebrates—A: Invertebrate photoreceptors. handbook of sensory physiology, vol VII/6A. Springer-Verlag, Berlin, pp 504–580

    Google Scholar 

  • Menzel R, Backhaus W (1991) Color vision in insects. In: Gouras P (ed) Vision and visual dysfunction, vol. VI. The perception of colour. MacMillan Press, Houndsmills, pp 262–293

    Google Scholar 

  • Merzlyak MN, Gitelson AA, Chivkunova OB, Raitkin VYu (1999) Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol Plantarum 106:135–141

    CAS  Google Scholar 

  • Miles PW (1989) Specific responses and damage caused by Aphidoidea. In: Minks AK, Harrewijn P (eds) Aphids—their biology, natural enemies and control. Elsevier, Amsterdam, pp 23–47

  • Moericke V (1941) Zur Lebensweise der Pfirsichlaus (Myzodes persicae Sulz.) auf der Kartoffel. Inaugural-Disseration Universität Bonn, 101 pp

  • Moericke V (1950) Über das Farbsehen der Pfirsichblattlaus (Myzodes persicae Sulz.). Z Tierpsychol 7:263–274

    Google Scholar 

  • Moericke V (1951) Eine Farbfalle zur Kontrolle des Fluges von Blattläusen, insbesondere der Pfirsichblattlaus, Myzodes persicae (Sulz.). Nachrichtenblatt des Deutschen Pflanzenschutzdientes 3:23–24

    Google Scholar 

  • Moericke V (1952) Farben als Landereize für geflügelte Blattläuse (Aphidoidea). Z Naturforschorschung 7b:304–309

    Google Scholar 

  • Moericke V (1953) Wie finden geflügelte Blattläuse ihre Wirtspflanze? Mitteilungen der Biologischen Zentralanstalt, Berlin Dahlem 75:90–97

    Google Scholar 

  • Moericke V (1955a) Über die Lebensgewohnheiten der geflügelten Blattläuse (Aphidina) unter besonderer Berücksichtigung des Verhaltens beim Landen. Z Ange Entomol 37:29–91

    Google Scholar 

  • Moericke V (1955b) Über das Verhalten phytophager Insekten während des Befallsfluges unter dem Einfluß von weißen Flächen. Z Pflanzenkrankh Pflanzensch 62:588–593

    Google Scholar 

  • Moericke V (1957) Der Flug von Insekten über pflanzenfreien und pflanzenbewachsenen Flächen. Z Pflanzenkrankh Pflanzensch 64:507–514

    Google Scholar 

  • Moericke V (1969) Hostplant specific colour behaviour by Hyalopterus pruni (Aphididae). Entomol Exp Appl 12:524–534

    Google Scholar 

  • Moericke V (1979) Nachweis des Farbensehens bei Blattläusen. Publikationen zu Wissenschaftlichen Filmen – Sektion Biologie, Serie 12 (1), Film C (1278) Institut für Wissenschaftlichen Film, Göttingen, 17 pp

  • Moore JB (1937) Reactions of aphids to colored insecticides. J Econ Entomol 30:305–309

    CAS  Google Scholar 

  • Müller HJ (1964) Über die Anflugdichte von Aphiden auf farbige Salatpflanzen. Entomol Exp Appl 7:85–104

    Google Scholar 

  • Neumeyer C (1981) Chromatic adaptation in the honeybee: Successive color contrast and color constancy. J Compar Physiol A 144:543–553

    Google Scholar 

  • Nottingham S, Hardie J, Tatchell GM (1991) Flight behaviour of the bird cherry aphid, Rhopalosiphum padi. Physiol Entomol 16:223–229

    Google Scholar 

  • Park KC, Elias D, Donato B, Hardie J (2000) Electroantennogram and behavioural responses of different forms of the bird cherry-oat aphid, Rhopalosiphum padi, to sex pheromone and a plant volatile. J Insect Physiol 46:597–604

    PubMed  CAS  Google Scholar 

  • Pelletier Y (1990) The role of the color of the subtratum on the initiation of the probing behavior in Myzus persicae (Sulzer) and Macrosiphum euphorbiae (Thomas) (Homoptera: Aphididae). Can J Zool 68:694–698

    Article  Google Scholar 

  • Petterson J (1970) Studies on Rhapalosiphum padi (L.) I. Laboratory studies on olfactometric responses to the winter host Prunus padus L. Lantbrukshögskolans Annaler 36:381–399

    Google Scholar 

  • Pospíšil J (1963) Orientation of Myzodes persicae (Sulz.) to light. Acta Soc Entomol Čechosloveniae 60:94–98

    Google Scholar 

  • Powell G, Hardie J, Pickett JA (1995) Response of Myzus persicae to the repellent polygodial in choice and no-choice video assays with young and mature leaf tissure. Entomol Exp Appl 74:91–94

    Google Scholar 

  • Prasad SK, Lal J (2001) Population dynamics of alate mustard aphid, Lipaphis erysimi, and its colour preference. Indian J Entomol 63:285–289

    Google Scholar 

  • Prokopy RJ, Owens ED (1983) Visual detection of plants by herbivorous insects. Annu Rev Entomol 28:337–364

    Google Scholar 

  • Rabbinge R, Drees EM, van der Graaf M, Verberne FCM, Wesselo A (1981) Damage effects of cereal aphids in wheat. Netherlands J P1ant Pathol 87:217–232

    Google Scholar 

  • Rieckmann W, Zahn V (1998) Relationship of aphid flight behaviour and successful potato seed production in the district of the Hannover chamber of agriculture from 1980–1996. Gesunde Pflanzen 50:107–111

    Google Scholar 

  • Schaefer HM, Rolshausen (2007) Aphids do not attend to leaf colour as visual signal, but to the handicap of reproductive investment. Biol Lett 3:1–4

    PubMed  Google Scholar 

  • Serrano L, Filella I, Peñuelas J (2000) Remote sensing of biomass and yield of winter wheat under different nitrogen supplies. Crop Sci 40:723–731

    Article  Google Scholar 

  • Shull CA (1929) A spectrophotometric study of reflection of light from leaf surfaces. Bot Gazette 87:583–607

    Google Scholar 

  • Siddiqi A, Cronin TW, Loew ER, Vorobyev M, Summers K (2004) Interspecific and intraspecific views of color signals in the strawberry poison frog Dendrobates pumilio. J Exp Biol 207:2471–2485

    PubMed  Google Scholar 

  • Sinkkonen A (2006) Do autumn leaf colours serve as a reproductive insurance against sucking herbivores? Oikos 113:557–562

    Google Scholar 

  • Smith J (1976) Influence of crop backgrounds on aphids and other phytophagous insects on Brussels sprouts. Ann Appl Biol 83:1–13

    Google Scholar 

  • Stadler B, Michalzik B, Müller T (1998) Linking aphid ecology with nutrient fluxes in a coniferous forest. Ecology 79:1514–1525

    Google Scholar 

  • Stavenga DG, Smits RP, Hoenders BJ (1993) Simple exponential functions describing the absorbance bands of visual pigment spectra. Vision Res 33:1011–1017

    PubMed  CAS  Google Scholar 

  • Sylvester ES (1989) Viruses transmitted by aphids. In: Minks AK, Harrewijn P (eds) Aphids – their biology, natural enemies and control. Elsevier, Amsterdam, pp 65–88

  • Tamm CO (1951) Seasonal variation in composition of birch leaves. Physiol Plantarum 4:461–469

    CAS  Google Scholar 

  • Thieme T, Steiner H, Busch T (1994) Vergleich der Blattlausfänge in verschiedenen Gelbschalen. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes 46:65–68

    Google Scholar 

  • Troje N (1993) Spectral categories in the learning behaviour of blowflies. Z Naturforschung 48c:96–104

    Google Scholar 

  • Vishnevskaya TM, Shura-Bura TM (1990) Spectral sensitivity of photoreceptors and spectral inputs to the neurons of the first optic ganglion in the locust (Locusta migratoria). In: Gribakin FG, Wiese K, Popov AV (eds) Sensory systems and communication in arthropods. Birkhäuser Verlag, Basel, pp 387–394

    Google Scholar 

  • Wimp GM, Whitham TG (2001) Biodiversity consequences of predation and host plant hybridization on an aphid–ant mutualism. Ecology 82:440–452

    Google Scholar 

  • Wyman JA, Toscano NC, Kido K, Johnson H, Mayberry KS (1979) Effects of mulching on the spread of aphid-transmitted watermelon mosaic virus to summer squash. J Econ Entomol 72:139–143

    Google Scholar 

  • Yang EC, Lin HC, Hung YS (2004) Patterns of chromatic information processing in the lobula of the honeybee, Apis mellifera L. J Insect Physiol 50:913–925

    PubMed  CAS  Google Scholar 

  • Yoltas T, Baspinar H, Aydin AC, Yildirim EM, Economou AS, Read PE (2001) The effect of reflective and black mulches on yield, quality and aphid populations on processing tomato. Acta Horticult 616:267–270

    Google Scholar 

  • Žďárek J, Pospíšil J (1966) On the visual orientation of Aphis fabae Scop. to coloured lights. Acta Entomol Bohemos 63:17–24

    Google Scholar 

Download references

Acknowledgements

During the writing of this article, TFD was supported by a fellowship within the Postdoc-Programme of the German Science Foundation (Deutsche Forschungsgemeinschaft, DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Felix Döring.

Additional information

Handling Editor: Robert Glinwood

Rights and permissions

Reprints and permissions

About this article

Cite this article

Döring, T.F., Chittka, L. Visual ecology of aphids—a critical review on the role of colours in host finding. Arthropod-Plant Interactions 1, 3–16 (2007). https://doi.org/10.1007/s11829-006-9000-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-006-9000-1

Keywords

Navigation