Skip to main content
Log in

Computational Foot Modeling: Scope and Applications

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

The aim of this paper is to provide a general review of the computational models of the human foot. The field of computational simulation in biomechanics has significantly advanced in the last three decades. Medicine and engineering fields increasingly collaborate to analyze biological systems. This study seeks a link between two areas of knowledge to achieve a better understanding between clinicians and researchers. The review includes two-dimensional and three-dimensional, detailed and simplified, partial- and full-shape models of the lower limb, ankle and foot. Practical issues in computational modeling, tissue constitutive model approaches and pioneering applications are extensively discussed. Recent challenges and future guidelines in the field of foot computational simulation are outlined. Although this study is focused on foot modeling, the main ideas can be employed to evaluate other parts of the body. The advances in computational foot modeling can aid in reliable simulations and analyses of foot pathologies, which are promising as modern tools of personalized medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Saltzman C, Nawoczenski D (1995) Complexities of foot architecture as a base of support. J Orthop Sports Phys Ther 21:354–360

    Article  Google Scholar 

  2. Prendergast PJ (1997) Finite element models in tissue mechanics and orthopaedic implant design. Clin Biomech 12:343–366

    Article  Google Scholar 

  3. Mackerle J (2006) Finite element modeling and simulations in orthopedics: a bibliography 1998–2005. Comput Methods Biomech Biomed Eng 9:149–199

    Article  Google Scholar 

  4. Kirby KA (2001) What future direction should podiatric biomechanics take? Clin Podiatr Med Surg 18:719–723 vii

    Google Scholar 

  5. Nakamura S, Crowninshield RD, Cooper RR (1981) An analysis of soft tissue loading in the foot—a preliminary report. Bull Prosthet Res 18:27–34

    Google Scholar 

  6. Patil K, Braak L, Huson A (1996) Analysis of stresses in two-dimensional models of normal and neuropathic feet. Med Biol Eng Comput 34:280–284

    Article  Google Scholar 

  7. Lemmon D, Shiang TY, Hashmi A, Ulbrecht JS, Cavanagh PR (1997) The effect of insoles in therapeutic footwear—a finite element approach. J Biomech 30:615–620

    Article  Google Scholar 

  8. Gefen A, Megido-Ravid M, Itzchak Y, Arcan M (2000) Biomechanical analysis of the three-dimensional foot structure during gait: a basic tool for clinical applications. J Biomech Eng 122:630–639

    Article  Google Scholar 

  9. Gefen A (2002) Stress analysis of the standing foot following surgical plantar fascia release. J Biomech 35:629–637

    Article  Google Scholar 

  10. Gefen A (2003) Plantar soft tissue loading under the medial metatarsals in the standing diabetic foot. Med Eng Phys 25:491–499

    Article  Google Scholar 

  11. Jacob S, Patil MK (1999) Three-dimensional foot modeling and analysis of stresses in normal and early stage hansen’s disease with muscle paralysis. J Rehabil Res Dev 36:252–263

    Google Scholar 

  12. Bandak FA, Tannous RE, Toridis T (2001) On the development of an osseo-ligamentous finite element model of the human ankle joint. Int J Solids Struct 38:1681–1697

    Article  MATH  Google Scholar 

  13. Chen W, Tang F, Ju C-W (2001) Stress distribution of the foot during mid-stance to push-off in barefoot gait : a 3-D finite element analysis. Clin Biomech 16:614–620

    Article  Google Scholar 

  14. Cheung JT-M, Zhang M, An K-N (2004) Effects of plantar fascia stiffness on the biomechanical responses of the ankle–foot complex. Clin Biomech 19:839–846

    Article  Google Scholar 

  15. Cheung JT-M, Zhang M, Leung AK-L, Fan Y-B (2005) Three-dimensional finite element analysis of the foot during standing—a material sensitivity study. J Biomech 38:1045–1054

    Article  Google Scholar 

  16. Qiu T-X, Teo E-C, Yan Y-B, Lei W (2011) Finite element modeling of a 3D coupled foot-boot model. Med Eng Phys 33:1228–1233

    Article  Google Scholar 

  17. Sopher R, Nixon J, McGinnis E, Gefen A (2011) The influence of foot posture, support stiffness, heel pad loading and tissue mechanical properties on biomechanical factors associated with a risk of heel ulceration. J Mech Behav Biomed Mater 4:572–582

    Article  Google Scholar 

  18. Cheung JT, Zhang M (2006) Finite element modeling of the human foot and footwear. ABAQUS users’ conference. pp 145–159

  19. Antunes PJ, Dias GR, Coelho AT, Rebelo F, Pereira T (2006) Non-linear finite element modelling of anatomically detailed 3D foot model. 1st ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing, Oporto

  20. Bayod J, Becerro-de-Bengoa-Vallejo R, Losa-Iglesias ME, Doblaré M (2012) Mechanical stress redistribution in the calcaneus after autologous bone harvesting. J Biomech 45:1219–1226

    Article  Google Scholar 

  21. Flavin R, Halpin T, O’Sullivan R, FitzPatrick D, Ivankovic A, Stephens MM (2008) A finite-element analysis study of the metatarsophalangeal joint of the hallux rigidus. J Bone Jt Surg Br 90:1334–1340

    Article  Google Scholar 

  22. Chen W-M, Lee T, Lee PV-S, Lee JW, Lee S-J (2010) Effects of internal stress concentrations in plantar soft-tissue—a preliminary three-dimensional finite element analysis. Med Eng Phys 32:324–331

    Article  Google Scholar 

  23. Fontanella CG, Matteoli S, Carniel EL, Wilhjelm JE, Virga A, Corvi A et al (2012) Investigation on the load-displacement curves of a human healthy heel pad: in vivo compression data compared to numerical results. Med Eng Phys 34:1253–1259

    Article  Google Scholar 

  24. Cheng H-YK, Lin C-L, Wang H-W, Chou S-W (2008) Finite element analysis of plantar fascia under stretch-the relative contribution of windlass mechanism and Achilles tendon force. J Biomech 41:1937–1944

    Article  Google Scholar 

  25. Budhabhatti SP, Erdemir A, Petre M, Sferra J, Donley B, Cavanagh PR (2007) Finite element modeling of the first ray of the foot: a tool for the design of interventions. J Biomech Eng 129:750–756

    Article  Google Scholar 

  26. García-González A, Bayod J, Prados-Frutos JC, Losa-Iglesias M, Jules KT, Becerro de Bengoa-Vallejo R et al (2009) Finite-element simulation of flexor digitorum longus or flexor digitorum brevis tendon transfer for the treatment of claw toe deformity. J Biomech 42:1697–1704

    Article  Google Scholar 

  27. Isvilanonda V, Dengler E, Iaquinto JM, Sangeorzan BJ, Ledoux WR (2012) Finite element analysis of the foot: model validation and comparison between two common treatments of the clawed hallux deformity. Clin Biomech 27:837–844 (Bristol, Avon)

    Article  Google Scholar 

  28. Yu J, Cheung JT-M, Fan Y, Zhang Y, Leung AK-L, Zhang M (2008) Development of a finite element model of female foot for high-heeled shoe design. Clin Biomech 23:31–38

    Article  Google Scholar 

  29. Qian Z, Ren L, Ren L, Boonpratatong A (2010) A three-dimensional finite element musculoskeletal model of the human foot complex. IFMBE Proc 31:297–300

    Article  Google Scholar 

  30. Babuska I, Oden JT (2004) Verification and validation in computational engineering and science: basic concepts. Comput Methods Appl Mech Eng 193:4057–4066

    Article  MathSciNet  MATH  Google Scholar 

  31. Oreskes N, Shrader-Frechette K, Belitz K (1994) Verification, validation, and confirmation of numerical models in the earth sciences. Science 263:641–646

    Article  Google Scholar 

  32. Erdemir A, Guess TM, Halloran J, Tadepalli SC, Morrison TM (2012) Considerations for reporting finite element analysis studies in biomechanics. J Biomech 45:625–633

    Article  Google Scholar 

  33. Roache PJ (1998) Verification and validation in computational science and engineering. Hermosa Publishers, Albuquerque

    Google Scholar 

  34. Anderson AE, Ellis BJ, Weiss JA (2007) Verification, validation and sensitivity studies in computational biomechanics. Comput Methods Biomech Biomed Eng 10:171–184

    Article  Google Scholar 

  35. Viceconti M, Olsen S, Nolte L-P, Burton K (2005) Extracting clinically relevant data from finite element simulations. Clin Biomech 20:451–454

    Article  Google Scholar 

  36. Henninger HB, Reese SP, Anderson AE, Weiss JA (2010) Validation of computational models in biomechanics. Proc Inst Mech Eng Part H J Eng Med 224:801–812

    Article  Google Scholar 

  37. Razak AHA, Zayegh A, Begg RK, Wahab Y (2012) Foot plantar pressure measurement system: a review. Sensors 12:9884–9912 (Basel)

    Article  Google Scholar 

  38. Chockalingam N, Healy A, Naemi R, Burgess-Walker P, Abdul Razak AH, Zayegh A, Begg RK, Wahab Y (2013) Comments and reply to: foot plantar pressure measurement system: a review. Sensors 13:3527–3529

  39. Guiotto A, Sawacha Z, Guarneri G, Avogaro A, Cobelli C (2014) 3D finite element model of the diabetic neuropathic foot: a gait analysis driven approach. J Biomech 47:3064–3071

    Article  Google Scholar 

  40. Lin S-C, Chen CP-C, Tang SF-T, Chen C-W, Wang J-J, Hsu C-C et al (2014) Stress distribution within the plantar aponeurosis during walking—a dynamic finite element analysis. J Mech Med Biol 14:1450053

    Article  Google Scholar 

  41. Liu X, Zhang M (2013) Redistribution of knee stress using laterally wedged insole intervention: finite element analysis of knee–ankle–foot complex. Clin Biomech 28:61–67 (Bristol, Avon)

    Article  Google Scholar 

  42. Yu J, Cheung JT-M, Wong DW-C, Cong Y, Zhang M (2013) Biomechanical simulation of high-heeled shoe donning and walking. J Biomech 46:2067–2074

    Article  Google Scholar 

  43. Liang J, Yang Y, Yu G, Niu W, Wang Y (2011) Deformation and stress distribution of the human foot after plantar ligaments release: a cadaveric study and finite element analysis. Sci China Life Sci 54:267–271

    Article  Google Scholar 

  44. Chen W-M, Park J, Park S-B, Shim VP-W, Lee T (2012) Role of gastrocnemius-soleus muscle in forefoot force transmission at heel rise—a 3D finite element analysis. J Biomech 45:1783–1789

    Article  Google Scholar 

  45. Petre M, Erdemir A, Panoskaltsis VP, Spirka TA, Cavanagh PR (2013) Optimization of nonlinear hyperelastic coefficients for foot tissues using a magnetic resonance imaging deformation experiment. J Biomech Eng 135:61001–61012

    Article  Google Scholar 

  46. Tannous RE, Bandak FA, Toridis TG, Eppinger RH (1996) Three-dimensional finite element model of the human ankle: development and preliminary application to axial impulsive loading. Proc Stapp Car Crash Conf 40:219–236

    Google Scholar 

  47. Shin J, Yue N, Untaroiu CD (2012) A finite element model of the foot and ankle for automotive impact applications. Ann Biomed Eng 40:2519–2531

    Article  Google Scholar 

  48. Ishii H, Sakurai Y, Maruyama T (2014) Effect of soccer shoe upper on ball behaviour in curve kicks. Sci Rep 4:1–8

    Article  Google Scholar 

  49. Natali AN, Forestiero A, Carniel EL, Pavan PG, Dal Zovo C (2010) Investigation of foot plantar pressure: experimental and numerical analysis. Med Biol Eng Comput 48:1167–1174

    Article  Google Scholar 

  50. Tao K, Wang D, Wang C, Wang X, Liu A, Nester CJ et al (2009) An in vivo experimental validation of a computational model of human foot. J Bionic Eng 6:387–397

    Article  Google Scholar 

  51. Trabelsi N, Milgrom C, Yosibash Z (2014) Patient-specific FE analyses of metatarsal bones with inhomogeneous isotropic material properties. J Mech Behav Biomed Mater 29:177–189

    Article  Google Scholar 

  52. Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: a review with recommendations associated with the modeling of bone tissue. J Biomech 46:1477–1488

    Article  Google Scholar 

  53. Oberkampf WL, Trucano TG, Hirsch C (2002) Verification, validation, and predictive capability in computational engineering and physics. Found. verif. valid. 21st century work. p 1–74, 2002

  54. Currey J (2003) The many adaptations of bone. J Biomech 36:1487–1495

    Article  Google Scholar 

  55. Cowin SC (1979) On the strength anisotropy of bone and wood. J Appl Mech 46:832–838

    Article  MATH  Google Scholar 

  56. Wirtz D, Schiffers N, Pandorf T (2000) Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur. J Biomech 33:1325–1330

    Article  Google Scholar 

  57. Cowin SC, Van Buskirk WC, Ashman RB (1987). The properties of bone. Handb Bioeng. McGraw-Hill, New York

  58. Huiskes R (1982) On the modelling of long bones in structural analyses. J Biomech 15:65–69

    Article  Google Scholar 

  59. Wu L, Zhong S, Zheng R, Qu J, Ding Z, Tang M et al (2007) Clinical significance of musculoskeletal finite element model of the second and the fifth foot ray with metatarsal cavities and calcaneal sinus. Surg Radiol Anat 29:561–567

    Article  Google Scholar 

  60. Evans FG (1973) Mechanical properties of bone. Thomas C.C, Springfield

    Google Scholar 

  61. Yamada H (1970) Strength of biological materials. The Williams & Wilkins Company, Baltimore

    Google Scholar 

  62. Cowin SC (1985) The relationship between the elasticity tensor and the fabric tensor. Mech Mater 4:137–147

    Article  Google Scholar 

  63. Goldstein SA (1987) The mechanical properties of trabecular bone: dependence on anatomic location and function. J Biomech 20:1055–1061

    Article  Google Scholar 

  64. Morgan EF, Bayraktar HH, Keaveny TM (2003) Trabecular bone modulus—density relationships depend on anatomic site. J Biomech 36:897–904

    Article  Google Scholar 

  65. Currey J (1984) What should bones be designed to do? Calcif Tissue Int 36:7–8

    Article  Google Scholar 

  66. Keaveny TM, Guo XE, Wachtel EF, McMahon TA, Hayes WC (1994) Trabecular bone exhibits fully linear elastic behavior and yields at low strains. J Biomech 27:1127–1136

    Article  Google Scholar 

  67. Rho JY, Ashman RB, Turner CH (1993) Young’s modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J Biomech 26:111–119

    Article  Google Scholar 

  68. Novitskaya E, Chen P-Y, Hamed E, Jun L, Lubarda V, Jasiuk I et al (2011) Recent advances on the measurement and calculation of the elastic moduli of cortical and trabecular bone: a review. Theor Appl Mech 38:209–297

    Article  MathSciNet  MATH  Google Scholar 

  69. García-Aznar JM, Bayod J, Rosas A, Larrainzar R, García-Bógalo R, Doblaré M et al (2009) Load transfer mechanism for different metatarsal geometries: a finite element study. J Biomech Eng 131:021011

    Article  Google Scholar 

  70. Wu L (2007) Nonlinear finite element analysis for musculoskeletal biomechanics of medial and lateral plantar longitudinal arch of virtual Chinese human after plantar ligamentous structure failures. Clin Biomech 22:221–229

    Article  Google Scholar 

  71. Helgason B, Perilli E, Schileo E, Taddei F, Brynjólfsson S, Viceconti M (2008) Mathematical relationships between bone density and mechanical properties: a literature review. Clin Biomech 23:135–146 (Bristol, Avon)

    Article  Google Scholar 

  72. Cheung JT-M, Zhang M (2005) A 3-dimensional finite element model of the human foot and ankle for insole design. Arch Phys Med Rehabil 86:353–358

    Article  Google Scholar 

  73. Chen W-P, Ju C-W, Tang F-T (2003) Effects of total contact insoles on the plantar stress redistribution: a finite element analysis. Clin Biomech 18:S17–S24

    Article  Google Scholar 

  74. Van Buskirk WC, Ashman RB (1981) The elastic moduli of bone. Mech Prop Bone ASME AMD 45:131

    Google Scholar 

  75. Niu WX, Wang LJ, Feng TN, Jiang CH, Fan YB, Zhang M (2013) Effects of bone Young’ s modulus on finite element analysis in the lateral ankle biomechanics. Appl Bionics Biomech 10:189–195

    Article  Google Scholar 

  76. Wakabayashi I, Itoi E, Sano H, Shibuya Y, Sashi R, Minagawa H et al (2003) Mechanical environment of the supraspinatus tendon: a two-dimensional finite element model analysis. J Shoulder Elb Surg 12:612–617

    Article  Google Scholar 

  77. Willing RT, Lalone EA, Shannon H, Johnson JA, King GJW (2013) Validation of a finite element model of the human elbow for determining cartilage contact mechanics. J Biomech 46:1767–1771

    Article  Google Scholar 

  78. Butz KD, Merrell G, Nauman EA (2012) A biomechanical analysis of finger joint forces and stresses developed during common daily activities. Comput Methods Biomech Biomed Engin 15:131–140

    Article  Google Scholar 

  79. Kim J-E, Li Z, Ito Y, Huber CD, Shih AM, Eberhardt AW et al (2009) Finite element model development of a child pelvis with optimization-based material identification. J Biomech 42:2191–2195

    Article  Google Scholar 

  80. Beillas P, Papaioannou G, Tashman S, Yang KH (2004) A new method to investigate in vivo knee behavior using a finite element model of the lower limb. J Biomech 37:1019–1030

    Article  Google Scholar 

  81. Nguyen TC (2005) Mathematical modelling of the biomechanical properties of articular cartilage. University of Queensland, Queensland

    Google Scholar 

  82. Clift SE (1992) Finite-element analysis in cartilage biomechanics. J Biomed Eng 14:217–221

    Article  Google Scholar 

  83. Thomas VJ, Patil KM, Radhakrishnan S (2004) Three-dimensional stress analysis for the mechanics of plantar ulcers in diabetic neuropathy. Med Biol Eng Comput 42:230–235

    Article  Google Scholar 

  84. Tao K, Wang C-T, Wang D-M, Wang X (2005) Primary analysis of the first ray using a 3-dimension finite element foot model. Conf. Proc IEEE Eng Med Biol Soc 3:2946–2949 Shanghai, China

    Google Scholar 

  85. Actis RL, Ventura LB, Smith KE, Commean PK, Lott DJ, Pilgram TK et al (2006) Numerical simulation of the plantar pressure distribution in the diabetic foot during the push-off stance. Med Biol Eng Comput 44:653–663

    Article  Google Scholar 

  86. Mak AF, Lai WM, Mow VC (1987) Biphasic indentation of articular cartilage—I. Theoretical analysis. J Biomech 20:703–714

    Article  Google Scholar 

  87. Athanasiou KA, Liu GT, Lavery LA, Lanctot DR, Schenck RC (1998) Biomechanical topography of human articular cartilage in the first metatarsophalangeal joint. Clin Orthop Relat Res 348:269–281

  88. Schreppers GJ, Sauren AA, Huson A (1990) A numerical model of the load transmission in the tibio-femoral contact area. Proc Inst Mech Eng H 204:53–59

    Article  Google Scholar 

  89. Moglo K, Shirazi-Adl A (2003) On the coupling between anterior and posterior cruciate ligaments, and knee joint response under anterior femoral drawer in flexion: a finite element study. Clin Biomech 18:751–759

    Article  Google Scholar 

  90. Weiss JA, Gardiner JC (2001) Computational modeling of ligament mechanics. Crit Rev Biomed Eng 29:303–371

    Article  Google Scholar 

  91. Peña E, Calvo B, Martínez MA, Doblaré M (2006) A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J Biomech 39:1686–1701

    Article  Google Scholar 

  92. Guo Y, Zhang X, Chen W (2009) Three-dimensional finite element simulation of total knee joint in gait cycle. Acta Mech Solida Sin 22:347–351

    Article  Google Scholar 

  93. Provenzano P, Lakes R, Keenan T, Vanderby R Jr (2001) Nonlinear ligament viscoelasticity. Ann Biomed Eng 29:908–914

    Article  Google Scholar 

  94. Peña E, Peña JA, Doblaré M (2008) On modelling nonlinear viscoelastic effects in ligaments. J Biomech 41:2659–2666

    Article  Google Scholar 

  95. Forestiero A, Carniel EL, Natali AN (2014) Biomechanical behaviour of ankle ligaments: constitutive formulation and numerical modelling. Comput Methods Biomech Biomed Eng 17:395–404

  96. Siegler S, Block J, Schneck CD (1988) The mechanical characteristics of the collateral ligaments of the human ankle joint. Foot Ankle Int 8:234–242

    Article  Google Scholar 

  97. Forestiero A, Carniel EL, Venturato C, Natali AN (2013) Investigation of the biomechanical behaviour of hindfoot ligaments. Proc Inst Mech Eng H 227:683–692

    Article  Google Scholar 

  98. Wang JH-C (2006) Mechanobiology of tendon. J Biomech 39:1563–1582

    Article  Google Scholar 

  99. Komi P (1990) Relevance of in vivo force measurements to human biomechanics. J Biomech 23:23–34

    Article  Google Scholar 

  100. Kongsgaard M, Aagaard P (2005) Structural Achilles tendon properties in athletes subjected to different exercise modes and in Achilles tendon rupture patients. J Appl Physiol 99:1965–1971

    Article  Google Scholar 

  101. Lichtwark GA, Wilson AM (2005) In vivo mechanical properties of the human Achilles tendon during one-legged hopping. J Exp Biol 208:4715–4725

    Article  Google Scholar 

  102. Kongsgaard M, Nielsen CH, Hegnsvad S, Aagaard P, Magnusson SP (2011) Mechanical properties of the human Achilles tendon, in vivo. Clin Biomech 26:772–777 (Bristol, Avon)

    Article  Google Scholar 

  103. Peltonen J, Cronin NJ, Stenroth L, Finni T, Avela J (2012) Achilles tendon stiffness is unchanged one hour after a marathon. J Exp Biol 215:3665–3671

    Article  Google Scholar 

  104. Louis-Ugbo J, Leeson B, Hutton WC (2004) Tensile properties of fresh human calcaneal (Achilles) tendons. Clin Anat 17:30–35

    Article  Google Scholar 

  105. Wren TA, Yerby SA, Beaupré GS, Carter DR (2001) Mechanical properties of the human achilles tendon. Clin Biomech 16:245–251

    Article  Google Scholar 

  106. Hansen P, Kovanen V, Hölmich P, Krogsgaard M, Hansson P, Dahl M et al (2013) Micromechanical properties and collagen composition of ruptured human achilles tendon. Am J Sports Med 41:437–443

    Article  Google Scholar 

  107. Datta B, Salleh R, Mafulli N, Neil M, Butler A, Walsh W (2006) Mechanical properties of human flexor hallucis longus, peroneus brevis and tendo achilles tendons. 52nd annual meeting orthopaedic research society paper no 1889, p1889. 2006

  108. Sebastian H, Datta B, Maffulli N, Neil M, Walsh WR (2007) Mechanical properties of reconstructed achilles tendon with transfer of peroneus brevis or flexor hallucis longus tendon. J Foot Ankle Surg 46:424–428

    Article  Google Scholar 

  109. Severinsen K, Andersen H (2007) Evaluation of atrophy of foot muscles in diabetic neuropathy—a comparative study of nerve conduction studies and ultrasonography. Clin Neurophysiol 118:2172–2175

    Article  Google Scholar 

  110. Hing WA, Rome K, Cameron AF (2009) Reliability of measuring abductor hallucis muscle parameters using two different diagnostic ultrasound machines. J Foot Ankle Res 2:33

    Article  Google Scholar 

  111. Mickle KJ, Nester CJ, Crofts G, Steele JR (2013) Reliability of ultrasound to measure morphology of the toe flexor muscles. J Foot Ankle Res 6:12

    Article  Google Scholar 

  112. Schechtman H, Bader D (1997) In vitro fatigue of human tendons. J Biomech 30:829–835

    Article  Google Scholar 

  113. Maganaris CN, Paul JP (1999) In vivo human tendon mechanical properties. J Physiol 521:307–313

    Article  Google Scholar 

  114. Maganaris CN, Paul JP (2002) Tensile properties of the in vivo human gastrocnemius tendon. J Biomech 35:1639–1646

    Article  Google Scholar 

  115. Bayod J, Losa-Iglesias M, de Bengoa-Vallejo RB, Prados-Frutos JC, Jules KT, Doblare M (2010) Advantages and drawbacks of proximal interphalangeal joint fusion versus flexor tendon transfer in the correction of hammer and claw toe deformity. A finite-element study. J Biomech Eng 132(5):51002–51007

    Article  Google Scholar 

  116. Gu YD, Li JS, Lake MJ, Ren XJ, Zeng YJ (2008) The mechanical response of Achilles tendon during different kinds of sports. Commun Numer Methods Eng 24:2077–2085

    Article  MATH  Google Scholar 

  117. Spyrou LA (2009) Muscle and tendon tissues : constitutive modeling, numerical implementation and applications. University of Thessaly, Greece

  118. Spyrou LA, Aravas N (2012) Muscle-driven finite element simulation of human foot movements. Comput Methods Biomech Biomed Eng 15:925–934

    Article  Google Scholar 

  119. Erdemir A, Hamel AJ, Fauth AR, Piazza SJ, Sharkey NA (2004) Dynamic loading of the plantar aponeurosis in walking. J Bone Jt Surg Am 86:546–552

    Google Scholar 

  120. Kim W, Voloshin AS (1995) Role of plantar fascia in the load bearing capacity of the human foot. J Biomech 28:1025–1033

    Article  Google Scholar 

  121. Sarrafian SK (1987) Functional characteristics of the foot and plantar aponeurosis under tibiotalar loading. Foot Ankle Int 8:4–18

    Article  Google Scholar 

  122. Luximon Y, Luximon A, Yu J, Zhang M (2012) Biomechanical evaluation of heel elevation on load transfer—experimental measurement and finite element analysis. Acta Mech Sin 28:232–240

    Article  Google Scholar 

  123. Hsu Y-C, Gung Y-W, Shih S-L, Feng C-K, Wei S-H, Yu C-H et al (2008) Using an optimization approach to design an insole for lowering plantar fascia stress–a finite element study. Ann Biomed Eng 36:1345–1352

    Article  Google Scholar 

  124. Wright DG, Rennels DC (1964) A study of the elastic properties of plantar fascia. J Bone Jt Surg Am 46:482–492

    Google Scholar 

  125. Kitaoka HB, Luo ZP, Growney ES, Berglund LJ, An K-N (1994) Material properties of the plantar aponeurosis. Foot Ankle Int 15:557–560

    Article  Google Scholar 

  126. Pavan PG, Stecco C, Darwish S, Natali NA, de Caro R (2011) Investigation of the mechanical properties of the plantar aponeurosis. Surg Radiol Anat 33:905–911

    Article  Google Scholar 

  127. Pavan PG, Pachera P, Stecco C, Natali AN (2014) Constitutive modeling of time-dependent response of human plantar aponeurosis. Comput Math Methods Med. doi:10.1155/2014/530242

  128. Rome K (1998) Mechanical properties of the heel pad: current theory and review of the literature. Foot 8:179–185

    Article  Google Scholar 

  129. Miller-Young JE, Duncan NA, Baroud G (2002) Material properties of the human calcaneal fat pad in compression: experiment and theory. J Biomech 35:1523–1531

    Article  Google Scholar 

  130. Gefen A, Megido-Ravid M, Itzchak Y (2001) In vivo biomechanical behavior of the human heel pad during the stance phase of gait. J Biomech 34:1661–1665

    Article  Google Scholar 

  131. Spears IR, Miller-Young JE (2006) The effect of heel-pad thickness and loading protocol on measured heel-pad stiffness and a standardized protocol for inter-subject comparability. Clin Biomech 21:204–212 (Bristol, Avon)

    Article  Google Scholar 

  132. Erdemir A, Viveiros ML, Ulbrecht JS, Cavanagh PR (2006) An inverse finite-element model of heel-pad indentation. J Biomech 39:1279–1286

    Article  Google Scholar 

  133. Chokhandre S, Halloran JP, van den Bogert AJ, Erdemir A (2012) A three-dimensional inverse finite element analysis of the heel pad. J Biomech Eng 134:031002

    Article  Google Scholar 

  134. Ledoux WR, Blevins JJ (2007) The compressive material properties of the plantar soft tissue. J Biomech 40:2975–2981

    Article  Google Scholar 

  135. Natali AN, Fontanella CG, Carniel EL (2010) Constitutive formulation and analysis of heel pad tissues mechanics. Med Eng Phys 32:516–522

    Article  Google Scholar 

  136. Chen W-M, Lee PV-S (2015) Explicit finite element modelling of heel pad mechanics in running: inclusion of body dynamics and application of physiological impact loads. Comput Methods Biomech Biomed Eng 18:1582–1595

  137. Brilakis E, Kaselouris E, Xypnitos F, Provatidis CG, Efstathopoulos N (2012) Effects of foot posture on fifth metatarsal fracture healing: a finite element study. J Foot Ankle Surg 51:720–728

    Article  Google Scholar 

  138. Takahashi A, Suzuki J, Takemura H (2012) Finite element modeling and simulation of human gait with a spontaneous plantar flexion. Int J Aerosp Light Struct 02:171–185

    Article  Google Scholar 

  139. Sun P-C, Shih S-L, Chen Y-L, Hsu Y-C, Yang R-C, Chen C-S (2012) Biomechanical analysis of foot with different foot arch heights: a finite element analysis. Comput Methods Biomech Biomed Eng 15:563–569

    Article  Google Scholar 

  140. Qian Z, Ren L, Ren L (2010) A coupling analysis of the biomechanical functions of human foot complex during locomotion. J Bionic Eng 7:S150–S157

    Article  Google Scholar 

  141. Spears IR, Miller-Young JE, Sharma J, Ker RF, Smith FW (2007) The potential influence of the heel counter on internal stress during static standing: a combined finite element and positional MRI investigation. J Biomech 40:2774–2780

    Article  Google Scholar 

  142. Gu Y, Li J, Ren X, Lake MJ, Zeng Y (2010) Heel skin stiffness effect on the hind foot biomechanics during heel strike. Skin Res Technol 16:291–296

    Google Scholar 

  143. Natali AN, Fontanella CG, Carniel EL (2012) Constitutive formulation and numerical analysis of the heel pad region. Comput Methods Biomech Biomed Eng 15:401–409

    Article  Google Scholar 

  144. Fontanella CG, Carniel EL, Forestiero A, Natali AN (2014) Investigation of the mechanical behaviour of the foot skin. Skin Res Technol 20:445–452

  145. Patil K, Braak L, Huson A (1993) A two dimensional model of a normal foot with cartilages and ligaments for stress analysis. Innov Technol Biol Méd 14:152–162

    Google Scholar 

  146. Patil KM, Braak LH, Huson A (1993) Stresses in simplified two dimensional model of a normal foot—a preliminary analysis. Mech Res Commun 20:1–7

    Article  Google Scholar 

  147. Jacob S, Patil K, Braak L, Huson A (1996) Stresses in a 3D two arch model of a normal human foot. Mech Res Commun 23:387–393

    Article  MATH  Google Scholar 

  148. Andrea SED, Thompson D, Cao D, Davis B (1999) Finite Element Modeling of Load Transmission Through the Calcaneus. In: 23rd annual meeting of the American Society of Biomechanics, Pittsburgh.

  149. Giddings V, Beaupre G, Whalen R, Carter D (2000) Calcaneal loading during walking and running. Med Sci Sports Exerc 32:627–634

    Article  Google Scholar 

  150. Qian Z, Ren L, Ding Y, Hutchinson JR, Ren L (2013) A dynamic finite element analysis of human foot complex in the sagittal plane during level walking. PLoS One 8:e79424

    Article  Google Scholar 

  151. Halloran JP, Erdemir A, van den Bogert AJ (2009) Adaptive surrogate modeling for efficient coupling of musculoskeletal control and tissue deformation models. J Biomech Eng 131:011014

    Article  Google Scholar 

  152. Halloran JP, Ackermann M, Erdemir A, van den Bogert AJ (2010) Concurrent musculoskeletal dynamics and finite element analysis predicts altered gait patterns to reduce foot tissue loading. J Biomech 43:2810–2815

    Article  Google Scholar 

  153. Cheung JT-M, Zhang M, An K-N (2006) Effect of Achilles tendon loading on plantar fascia tension in the standing foot. Clin Biomech 21:194–203

    Article  Google Scholar 

  154. Beaugonin M, Haug E, Cesari D (1996) Numerical model of the human ankle/foot under impact loading in inversion and eversion. Proc Stapp Car Crash Conf 40:239–249

    Google Scholar 

  155. Beaugonin M, Haug E, Cesari D (1997) Improvement of numerical ankle/foot model: modeling of deformable bone. Proc Stapp Car Crash Conf 41:225–237

    Google Scholar 

  156. Kitagawa Y, Ichikawa H, King A, Levine R (1998) A severe ankle and foot injury in frontal crashes and its mechanism. SAE Technical Paper 983145. doi:10.4271/983145

  157. Kitagawa Y, Ichikawa H, King A, Begeman P (2000) Development of a human ankle/foot model. In: Kajzer J, Tanaka E, Yamada H (eds). Human Biomechanics and Injury Prevention SE - 15. Springer, Japan, pp 117–22

  158. Iwamoto M, Mikki K, Tanaka E (2005) Ankle skeletal injury predictions using anisotropic inelastic constitutive model of cortical bone taking into account damage evolution. Stapp Car Crash J 49:133–156

    Google Scholar 

  159. Beillas P, Lavaste F, Nicolopoulos D, Kayventash K, Yang KH, Robin S (1999) Foot and ankle finite element modeling using ct-scan data. 43rd Stapp Car Crash Conf., San Diego (CA), pp 217–42, 1999

  160. Liacouras PC, Wayne JS (2007) Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies. J Biomech Eng 129:811–817

    Article  Google Scholar 

  161. Liu Q, Zhang K, Zhuang Y, Li Z, Yu B, Pei G (2013) Analysis of the stress and displacement distribution of inferior tibiofibular syndesmosis injuries repaired with screw fixation: a finite element study. PLoS One 8:e80236

    Article  Google Scholar 

  162. Wei F, Hunley SC, Powell JW, Haut RC (2011) Development and validation of a computational model to study the effect of foot constraint on ankle injury due to external rotation. Ann Biomed Eng 39:756–765

    Article  Google Scholar 

  163. Wei F, Braman JE, Weaver BT, Haut RC (2011) Determination of dynamic ankle ligament strains from a computational model driven by motion analysis based kinematic data. J Biomech 44:2636–2641

    Article  Google Scholar 

  164. Gu YD, Ren XJ, Li JS, Lake MJ, Zhang QY, Zeng YJ (2010) Computer simulation of stress distribution in the metatarsals at different inversion landing angles using the finite element method. Int Orthop 34:669–676

    Article  Google Scholar 

  165. Spears I, Miller-Young J, Waters M, Rome K (2005) The effect of loading conditions on stress in the barefooted heel pad. Med Sci Sports Exerc 37:1030–1036

    Google Scholar 

  166. Cavanagh P, Erdemir A, Petre M (2008) A finite element approach to examine the relationship between plantar pressure and internal stress in the foot. In: 54th Annual Meeting of the Orthopaedic Research Society. San Francisco, CA

  167. Chen W, Lee P, Lee S (2009) Investigation of plantar barefoot pressure and soft-tissue internal stress: a three-dimensional finite element analysis. 13th Int Conf Biomed Eng IFMBE Proc 23:1817–1820

    Article  Google Scholar 

  168. Fernandez JW, Ul Haque MZ, Hunter PJ, Mithraratne K (2012) Mechanics of the foot Part 1: a continuum framework for evaluating soft tissue stiffening in the pathologic foot. Int J Numer Method Biomed Eng 28:1056–1070

    Article  MathSciNet  Google Scholar 

  169. Sciumè G, Boso DP, Gray WG, Cobelli C, Schrefler BA (2014) A two-phase model of plantar tissue: a step toward prediction of diabetic foot ulceration. Int J Numer Method Biomed Eng 30:1153–1169

  170. Wong DW-C, Zhang M, Yu J, Leung AK-L (2014) Biomechanics of first ray hypermobility: an investigation on joint force during walking using finite element analysis. Med Eng Phys 36:1388–1393

  171. Gefen A, Megido-Ravid M, Itzchak Y, Arcan M (1998) In: Proceedings of Medicon'98 VIII Mediterranean Conference on Medical and Biological Engineering and Computing, Lemesos (Limassol), Cyprus, 14–17 June 1998

  172. Cheung JT, An KN, Zhang M (2006) Consequences of partial and total plantar fascia release: a finite element study. Foot Ankle Int Am Orthop Foot Ankle Soc Swiss Foot Ankle Soc 27:125–132

    Google Scholar 

  173. Tao K, Ji W-T, Wang D-M, Wang C-T, Wang X (2010) Relative contributions of plantar fascia and ligaments on the arch static stability: a finite element study. Biomed Tech 55:265–271 (Berl)

    Article  Google Scholar 

  174. Iaquinto JM, Wayne JS (2010) Computational model of the lower leg and foot/ankle complex: application to arch stability. J Biomech Eng 132:021009

    Article  Google Scholar 

  175. Matzaroglou C, Bougas P, Panagiotopoulos E, Saridis A, Karanikolas M, Kouzoudis D (2010) Ninety-degree chevron osteotomy for correction of hallux valgus deformity: clinical data and finite element analysis. Open Orthop J 4:152–156

    Article  Google Scholar 

  176. Bayod J, de Bengoa Vallejo RB, Losa Iglesias ME, Doblaré M (2013) Stress at the second metatarsal bone after correction of hammertoe and claw toe deformity: a finite element analysis using an anatomical model. J Am Podiatr Med Assoc 103:260–273

    Article  Google Scholar 

  177. Wang Y, Li Z, Zhang M (2014) Biomechanical study of tarsometatarsal joint fusion using finite element analysis. Med Eng Phys 36:1394–1400

  178. Jordan C, Bartlett R (1995) Pressure distribution and perceived comfort in casual footwear. Gait Posture 3:215–220

    Article  Google Scholar 

  179. Witana CP, Goonetilleke RS, Xiong S, Au EYL (2009) Effects of surface characteristics on the plantar shape of feet and subjects’ perceived sensations. Appl Ergon 40:267–279

    Article  Google Scholar 

  180. Erdemir A, Saucerman JJ, Lemmon D, Loppnow B, Turso B, Ulbrecht JS et al (2005) Local plantar pressure relief in therapeutic footwear: design guidelines from finite element models. J Biomech 38:1798–1806

    Article  Google Scholar 

  181. Actis RL, Ventura LB, Lott DJ, Smith KE, Commean PK, Hastings MK et al (2008) Multi-plug insole design to reduce peak plantar pressure on the diabetic foot during walking. Med Biol Eng Comput 46:363–371

    Article  Google Scholar 

  182. Gu YD, Li JS, Lake MJ, Zeng YJ, Ren XJ, Li ZY (2011) Image-based midsole insert design and the material effects on heel plantar pressure distribution during simulated walking loads. Comput Methods Biomech Biomed Eng 14:747–753

    Article  Google Scholar 

  183. Fontanella CG, Forestiero A, Carniel EL, Natali AN (2013) Analysis of heel pad tissues mechanics at the heel strike in bare and shod conditions. Med Eng Phys 35:441–447

    Article  Google Scholar 

  184. Lin S, Lin C, Tang F, Chen W (2007) Combining experimental material property test and finite element analysis to investigate the plantar foot pressure distribution during standing. J Biomech 40:S337–S338

  185. Chu TM, Reddy NP, Padovan J (1995) Three-dimensional finite element stress analysis of the polypropylene, ankle–foot orthosis: static analysis. Med Eng Phys 17:372–379

    Article  Google Scholar 

  186. Chu TM, Reddy NP (1995) Stress distribution in the ankle–foot orthosis used to correct pathological gait. J Rehabil Res Dev 32:349–360

    Google Scholar 

  187. Goske S, Erdemir A, Petre M, Budhabhatti S, Cavanagh PR (2006) Reduction of plantar heel pressures: insole design using finite element analysis. J Biomech 39:2363–2370

    Article  Google Scholar 

  188. Cheung JT, Zhang M (2008) Parametric design of pressure-relieving foot orthosis using statistics-based finite element method. Med Eng Amp Phys 30:269–277

    Article  Google Scholar 

  189. Luo G, Houston VL, Garbarini MA, Beattie AC, Thongpop C (2011) Finite element analysis of heel pad with insoles. J Biomech 44:1559–1565

    Article  Google Scholar 

  190. Lin S-Y, Su K-C, Chang C-H (2013) Reverse engineering of CT-based rocker sole model—finite element analysis. 1st Int Conf Orange Technol. doi:10.1109/ICOT.2013.6521151

  191. Cheung JT-M, Yu J, Wong DW-C, Zhang M (2009) Current methods in computer-aided engineering for footwear design. Footwear Sci 1:31–46

    Article  Google Scholar 

  192. Verdejo R, Mills NJ (2004) Heel-shoe interactions and the durability of EVA foam running-shoe midsoles. J Biomech 37:1379–1386

    Article  Google Scholar 

  193. Even-Tzur N, Weisz E, Hirsch-Falk Y, Gefen A (2006) Role of EVA viscoelastic properties in the protective performance of a sport shoe: computational studies. Biomed Mater Eng 16:289–299

    Google Scholar 

  194. Cho J-R, Park S-B, Ryu S-H, Kim S-H, Lee S-B (2009) Landing impact analysis of sports shoes using 3-D coupled foot-shoe finite element model. J Mech Sci Technol 23:2583–2591

    Article  Google Scholar 

  195. Dai X-Q, Li Y, Zhang M, Cheung JT-M (2006) Effect of sock on biomechanical responses of foot during walking. Clin Biomech 21:314–321

    Article  Google Scholar 

  196. Bates KT, Savage R, Pataky TC, Morse SA, Webster E, Falkingham PL, Ren L, Qian Z, Collins D, Bennett MR, McClymont J, Crompton RH (2013) Does footprint depth correlate with foot motion and pressure? J R Soc Interface. doi:10.1098/rsif.2013.0009

  197. Gu Y, Li J (2005) Finite element analysis of the instep fatigue trauma in the high-heeled gait. World J Model Simul 1:117–122

    Google Scholar 

  198. Lievers WB, Kent RW (2013) Patient-specific modelling of the foot: automated hexahedral meshing of the bones. Comput Methods Biomech Biomed Eng 16:1287–1297

    Article  Google Scholar 

  199. Ramos A, Simões JA (2006) Tetrahedral versus hexahedral finite elements in numerical modelling of the proximal femur. Med Eng Phys 28:916–924

    Article  Google Scholar 

  200. Tadepalli SC, Erdemir A, Cavanagh PR (2011) Comparison of hexahedral and tetrahedral elements in finite element analysis of the foot and footwear. J Biomech 44:2337–2343

    Article  Google Scholar 

  201. Schileo E, Taddei F, Cristofolini L, Viceconti M (2008) Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro. J Biomech 41:356–367

    Article  Google Scholar 

  202. Idhammad A, Abdali A, Alaa N (2013) Computational simulation of the bone remodeling using the finite element method: an elastic-damage theory for small displacements. Theor Biol Med Model 10:32

    Article  Google Scholar 

  203. Pokorska-Bocci A, Stewart A, Sagoo GS, Hall A, Kroese M, Burton H (2014) “Personalized medicine”: what’s in a name? Pers Med 11:197–210

    Article  Google Scholar 

  204. Spirka TA, Erdemir A, Ewers Spaulding S, Yamane A, Telfer S, Cavanagh PR (2014) Simple finite element models for use in the design of therapeutic footwear. J Biomech 47:2948–2955

    Article  Google Scholar 

  205. Marchelli GLS, Ledoux WR, Isvilanonda V, Ganter MA, Storti DW (2014) Joint-specific distance thresholds for patient-specific approximations of articular cartilage modeling in the first ray of the foot. Med Biol Eng Comput 52:773–779

    Article  Google Scholar 

  206. Lochner SJ, Huissoon JP, Bedi SS (2014) Development of a patient-specific anatomical foot model from structured light scan data. Comput Methods Biomech Biomed Engin 17:1198–1205

    Article  Google Scholar 

  207. Podshivalov L, Fischer A, Bar-Yoseph PZ (2014) On the road to personalized medicine: multiscale computational modeling of bone tissue. Arch Comput Methods Eng 21:399–479

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the Brazilian Government (CAPES) and of the Pró-Reitoria de Pesquisa da Universidade Federal de Minas Gerais.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estevam Barbosa de Las Casas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales-Orcajo, E., Bayod, J. & Barbosa de Las Casas, E. Computational Foot Modeling: Scope and Applications. Arch Computat Methods Eng 23, 389–416 (2016). https://doi.org/10.1007/s11831-015-9146-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-015-9146-z

Keywords

Navigation