Skip to main content
Log in

Nonintrusive Stochastic Finite Elements for Crashworthiness with VPS/Pamcrash

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Crashworthiness analysis remains an important concern for the design of safety structures. In this context, uncertainties play an essential role in the response of a crash problem with non linear behavior. With this statement at hand, in this work it is presented a review of uncertainty quantification (UQ) techniques, with intrusive and non-intrusive approaches in stochastic finite element methods for crashworthiness. The well-known deterministic finite element solver VPS/Pamcrash is used to illustrate the currently available methods, developing a comparative analysis of these techniques in crashworthiness UQ. Finally, relevant non-intrusive methods are applied to analyze the behavior of a specific quantity of interest in a dynamic crash model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Al-Momani E, Rawabdeh I (2008) An application of finite element method and design of experiments in the optimization of sheet metal blanking process. JJMIE 2(1):53–63

    Google Scholar 

  2. Arregui-Mena JD, Margetts L, Mummery PM (2016) Practical application of the stochastic finite element method. Arch Comput Methods Eng 23(1):171–190

    MathSciNet  MATH  Google Scholar 

  3. Askey R, Wilson JA (1985) Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, vol 319. American Mathematical Soc

  4. Aslett LJ, Nagapetyan T, Vollmer SJ (2017) Multilevel Monte Carlo for reliability theory. Reliab Eng Syst Saf 165:188–196

    Google Scholar 

  5. Atkinson A, Donev A, Tobias R (2007) Optimum experimental designs, with SAS, vol 34. Oxford University Press

  6. Barea R, Novoa S, Herrera F, Achiaga B, Candela N (2018) A geometrical robust design using the taguchi method: application to a fatigue analysis of a right angle bracket. Dyna 85(205):37–46

    Google Scholar 

  7. Barth A, Schwab C, Zollinger N (2011) Multi-level monte carlo finite element method for elliptic pdes with stochastic coefficients. Numerische Mathematik 119(1):123–161

    MathSciNet  MATH  Google Scholar 

  8. Bergman L, Shinozuka M, Bucher C, Sobczyk K, Dasgupta G, Spanos P, Deodatis G, Spencer B, Ghanem R, Sutoh A et al (1997) A state-of-the-art report on computational stochastic mechanics. Probab Eng Mech 12(4):197–321

    Google Scholar 

  9. Berveiller M, Sudret B, Lemaire M (2004) Presentation of two methods for computing the response coefficients in stochastic finite element analysis. In: Proceedings of 9th ASCE specialty conference on probabilistic mechanics and structural reliability, Albuquerque, USA

  10. Berveiller M, Sudret B, Lemaire M (2006) Stochastic finite element: a non intrusive approach by regression. Eur J Comput Mech/Revue Européenne de Mécanique Numérique 15(1–3):81–92

    MATH  Google Scholar 

  11. Boyd JP (2001) Chebyshev and fourier spectral methods. Courier Corporation

  12. Datta S, Bandyopadhyay A, Pal PK (2008) Grey-based taguchi method for optimization of bead geometry in submerged arc bead-on-plate welding. Int J Adv Manuf Technol 39(11–12):1136–1143

    Google Scholar 

  13. Doostan A, Ghanem RG, Red-Horse J (2007) Stochastic model reduction for chaos representations. Comput Methods Appl Mech Eng 196(37–40):3951–3966

    MathSciNet  MATH  Google Scholar 

  14. Eiermann M, Ernst OG, Ullmann E (2007) Computational aspects of the stochastic finite element method. Comput Vis Sci 10(1):3–15

    MathSciNet  MATH  Google Scholar 

  15. Eldred M (2009) Recent advances in non-intrusive polynomial chaos and stochastic collocation methods for uncertainty analysis and design. In: 50th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference 17th AIAA/ASME/AHS adaptive structures conference 11th AIAA No, p. 2274

  16. Eldred M, Webster C, Constantine P (2008) Evaluation of non-intrusive approaches for wiener-askey generalized polynomial chaos. In: 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 16th AIAA/ASME/AHS Adaptive Structures Conference, 10th AIAA non-deterministic approaches conference, 9th AIAA Gossamer spacecraft forum, 4th AIAA multidisciplinary design optimization specialists conference, p 1892

  17. Fei NC, Mehat NM, Kamaruddin S (2013) Practical applications of Taguchi method for optimization of processing parameters for plastic injection moulding: a retrospective review. ISRN Ind Eng 2013:462174. https://doi.org/10.1155/2013/462174

    Article  Google Scholar 

  18. Feinberg J, Langtangen HP (2015) Chaospy: an open source tool for designing methods of uncertainty quantification. J Comput Sci 11:46–57

    MathSciNet  Google Scholar 

  19. Fishman G (2013) Monte Carlo: concepts, algorithms, and applications. Springer Science & Business Media

  20. Florentin E, Díez P (2012) Adaptive reduced basis strategy based on goal oriented error assessment for stochastic problems. Comput Methods Appl Mech Eng 225–228:116–127

    MathSciNet  MATH  Google Scholar 

  21. Fratila D, Caizar C (2011) Application of taguchi method to selection of optimal lubrication and cutting conditions in face milling of AlMg3. J Clean Prod 19(6–7):640–645

    Google Scholar 

  22. Ghanem RG, Kruger RM (1996) Numerical solution of spectral stochastic finite element systems. Comput Methods Appl Mech Eng 129(3):289–303

    MATH  Google Scholar 

  23. Ghanem RG, Spanos PD (2003) Stochastic finite elements: a spectral approach. Courier Corporation, North Chelmsford

    MATH  Google Scholar 

  24. Giles MB (2008) Multilevel monte carlo path simulation. Oper Res 56(3):607–617

    MathSciNet  MATH  Google Scholar 

  25. Gilli L, Lathouwers D, Kloosterman J, Van der Hagen T, Koning A, Rochman D (2013) Uncertainty quantification for criticality problems using non-intrusive and adaptive polynomial chaos techniques. Ann Nucl Energy 56:71–80

    Google Scholar 

  26. Gopalsamy BM, Mondal B, Ghosh S (2009) Taguchi method and ANOVA: an approach for process parameters optimization ofhard machining while machining hardened steel. J Sci Ind Res 68(8):686–695

    Google Scholar 

  27. Graham IG, Parkinson MJ, Scheichl R (2018) Modern Monte Carlo variants for uncertainty quantification in neutron transport. In: Contemporary computational mathematics-a celebration of the 80th birthday of Ian Sloan. Springer, pp 455–481

  28. Grigoriu M (2006) Evaluation of Karhunen–Loève, spectral, and sampling representations for stochastic processes. J Eng Mech 132(2):179–189

    Google Scholar 

  29. Hadigol M, Doostan A (2018) Least squares polynomial chaos expansion: a review of sampling strategies. Comput Methods Appl Mech Eng 332:382–407

    MathSciNet  MATH  Google Scholar 

  30. Hammersley JM (1960) Monte carlo methods for solving multivariable problems. Ann N Y Acad Sci 86(3):844–874

    MathSciNet  MATH  Google Scholar 

  31. Hosder S, Walters R, Balch M (2007) Efficient sampling for non-intrusive polynomial chaos applications with multiple uncertain input variables. In: 48th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, p 1939

  32. Hosder S, Walters R, Perez R (2014) A non-intrusive polynomial Chaos method for uncertainty propagation in CFD simulations. https://doi.org/10.2514/6.2006-891

  33. Jäckel P (2005) A note on multivariate Gauss–Hermite quadrature. ABN-Amro. Re, London

    Google Scholar 

  34. Kaintura A, Dhaene T, Spina D (2018) Review of polynomial chaos-based methods for uncertainty quantification in modern integrated circuits. Electronics 7(3):30

    Google Scholar 

  35. Kleiber M, Hien TD (1992) The stochastic finite element method: basic perturbation technique and computer implementation. Wiley, Chichester

    MATH  Google Scholar 

  36. Le Maıtre OP, Reagan MT, Najm HN, Ghanem RG, Knio OM (2002) A stochastic projection method for fluid flow: II. Random process. J Comput Phys 181(1):9–44

    MathSciNet  MATH  Google Scholar 

  37. Lin G, Iyer K, Hu S, Cai W, Marin S (2005) A computational design-of-experiments study of hemming processes for automotive aluminium alloys. Proc Inst Mech Eng Part B J Eng Manuf 219(10):711–722

    Google Scholar 

  38. Liu WK, Belytschko T, Mani A (1986) Probabilistic finite elements for nonlinear structural dynamics. Comput Methods Appl Mech Eng 56(1):61–81

    MATH  Google Scholar 

  39. Liu WK, Belytschko T, Mani A (1986) Random field finite elements. Int J Numer Methods Eng 23(10):1831–1845

    MathSciNet  MATH  Google Scholar 

  40. Liu Z, Liu Z, Peng Y (2017) Dimension reduction of Karhunen–Loeve expansion for simulation of stochastic processes. J Sound Vib. https://doi.org/10.1016/j.jsv.2017.07.016

    Article  Google Scholar 

  41. Mathelin L, Hussaini MY, Zang TA (2005) Stochastic approaches to uncertainty quantification in cfd simulations. Numer Algorithms 38(1–3):209–236

    MathSciNet  MATH  Google Scholar 

  42. Matthies HG, Keese A (2005) Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comput Methods Appl Mech Eng 194(12–16):1295–1331

    MathSciNet  MATH  Google Scholar 

  43. Niederreiter H (1978) Quasi-Monte Carlo methods and pseudo-random numbers. Bull Am Math Soc 84(6):957–1041

    MathSciNet  MATH  Google Scholar 

  44. Nouy A (2009) Recent developments in spectral stochastic methods for the numerical solution of stochastic partial differential equations. Arch Comput Methods Eng 16(3):251–285

    MathSciNet  MATH  Google Scholar 

  45. PAM-CRASH THEORY NOTES Manual V2000 (2000) Pam System International, France

  46. Phoon K, Huang H, Quek S (2005) Simulation of strongly non-Gaussian processes using Karhunen–Loeve expansion. Probab Eng Mech 20(2):188–198

    Google Scholar 

  47. Rifkin RM, Lippert RA (2007) Notes on regularized least squares. Technical Report, Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory

  48. Roy RK (2001) Design of experiments using the Taguchi approach: 16 steps to product and process improvement. Wiley, New York

    Google Scholar 

  49. Schevenels M, Lombaert G, Degrande G (2004) Application of the stochastic finite element method for gaussian and non-Gaussian systems. In: ISMA2004 international conference on noise and vibration engineering. Katholieke Univ Leuven, Dept Werktuigkunde, pp 3299–3314

  50. Sepahvand K (2016) Spectral stochastic finite element vibration analysis of fiber-reinforced composites with random fiber orientation. Compos Struct 145:119–128

    Google Scholar 

  51. Shinozuka M, Deodatis G (1991) Simulation of stochastic processes by spectral representation. Appl Mech Rev 44(4):191–204

    MathSciNet  Google Scholar 

  52. Sraj I, Mandli KT, Knio OM, Dawson CN, Hoteit I (2017) Quantifying uncertainties in fault slip distribution during the tōhoku tsunami using polynomial chaos. Ocean Dyn 67(12):1535–1551

    Google Scholar 

  53. Stefanou G (2009) The stochastic finite element method: past, present and future. Comput Methods Appl Mech Eng 198(9–12):1031–1051

    MATH  Google Scholar 

  54. Stefanou G, Papadrakakis M (2007) Assessment of spectral representation and Karhunen–Loève expansion methods for the simulation of Gaussian stochastic fields. Comput Methods Appl Mech Eng 196(21–24):2465–2477

    MATH  Google Scholar 

  55. Sudret B (2008) Global sensitivity analysis using polynomial chaos expansions. Reliab Eng Syst Saf 93(7):964–979

    Google Scholar 

  56. Sudret B (2014) Polynomial chaos expansions and stochastic finite element methods. CRC Press, Boca Raton, pp 265–300

    Google Scholar 

  57. Sudret B, Der Kiureghian A (2000) Stochastic finite element methods and reliability: a state-of-the-art report. Department of Civil and Environmental Engineering, University of California, Oakland

    Google Scholar 

  58. Sudret B, Mai CV (2015) Computing derivative-based global sensitivity measures using polynomial chaos expansions. Reliab Eng Syst Saf 134:241–250

    Google Scholar 

  59. Taguchi G, Konishi S (1987) Taguchi methods: orthogonal arrays and linear graphs; tools for quality engineering. ASI press

  60. Tolga Taner M, Sezen B (2007) Taguchi’s experimental design method on improvement of medical image quality. Leadersh Health Serv 20(1):42–51

    Google Scholar 

  61. Tsui KL (1992) An overview of taguchi method and newly developed statistical methods for robust design. IIE Trans 24(5):44–57

    Google Scholar 

  62. Wong TT, Luk WS, Heng PA (1997) Sampling with Hammersley and Halton points. J Graph Tools 2(2):9–24

    Google Scholar 

  63. Xiu D (2009) Fast numerical methods for stochastic computations: a review. Commun Comput Phys 5(2–4):242–272

    MathSciNet  MATH  Google Scholar 

  64. Xiu D (2010) Numerical methods for stochastic computations: a spectral method approach. Princeton University Press, Princeton

    MATH  Google Scholar 

  65. Xiu D, Karniadakis GE (2002) The wiener-askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 24(2):619–644

    MathSciNet  MATH  Google Scholar 

  66. Yang Z, Su X, Chen J, Liu G (2009) Monte carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials. Int J Solids Struct 46(17):3222–3234

    MATH  Google Scholar 

  67. Zang C, Friswell M, Mottershead J (2005) A review of robust optimal design and its application in dynamics. Comput Struct 83(4–5):315–326

    Google Scholar 

Download references

Acknowledgements

This work is partially funded by Generalitat de Catalunya (Grant Number 1278 SGR 2017-2019 and Pla de Doctorats Industrials 2017 DI 058) and Ministerio de Economía y Empresa and Ministerio de Ciencia, Innovación y Universidades (Grant Number DPI2017-85139-C2-2-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. García-González.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocas, M., García-González, A., Larráyoz, X. et al. Nonintrusive Stochastic Finite Elements for Crashworthiness with VPS/Pamcrash. Arch Computat Methods Eng 27, 1337–1362 (2020). https://doi.org/10.1007/s11831-019-09397-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-019-09397-x

Navigation