Skip to main content

Advertisement

Log in

State-of-the-Art Review of Machine Learning Applications in Additive Manufacturing; from Design to Manufacturing and Property Control

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

In this review, some of the latest applicable methods of machine learning (ML) in additive manufacturing (AM) have been presented and the classification of the most common ML techniques and designs for AM have been evaluated. Generally, AM methods are capable of creating complex designs and have shown great efficiency in the customization of intricate products. AM is also a multi-physical process and many parameters affect the quality in the development. As a result, ML has been considered as a competent modeling tool for further understanding and predicting the process of AM. In this work, most commonly implemented AM methods and practices that have been paired with ML methods along with their specific algorithms for optimization are considered. First, an overview of AM and ML techniques is provided. Then, the main steps in AM processes and commonly applied ML methods, as well as their applications, are discussed in further detail, and an outlook of the future of AM in the fourth industrial revolution is given. Ultimately, it was inferred from the previous papers that the most widely applied AM techniques are powder bed fusion, direct energy deposition, and fused deposition modeling. Also, there are other AM methods which are mentioned. The application of ML in each of the renowned techniques are reviewed more explicitly. It was found that, the lack of training data due to the novelty of AM, limitations of available materials to be applied in AM methods, non-standardization in AM data and process, and computational capability were some of the constraints of the application of ML in AM methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55

Similar content being viewed by others

References

  1. Dixit US, Hazarika M, Davim JP (2017) Manufacturing through ages. A brief history of mechanical engineering. Springer, Cham, pp 99–125

    Chapter  Google Scholar 

  2. Choudhari CJ, Thakare PS, Sahu SK (2022) 3D printing of composite sandwich structures for aerospace applications. High-performance composite structures: additive manufacturing and processing. Springer, Singapore, pp 45–73

    Chapter  Google Scholar 

  3. Whenish R, Velu R, Anand Kumar S, Ramprasath LS (2022) Additive manufacturing technologies for biomedical implants using functional biocomposites. High-performance composite structures: additive manufacturing and processing. Springer, Singapore, pp 25–44

    Chapter  Google Scholar 

  4. Jandyal A, Chaturvedi I, Wazir I, Raina A, Ul Haq MI (2022) 3D printing—a review of processes, materials and applications in industry 4.0. Sustain Oper Comput 3:33–42. https://doi.org/10.1016/J.SUSOC.2021.09.004

    Article  Google Scholar 

  5. Sandström CG (2016) The non-disruptive emergence of an ecosystem for 3D printing—insights from the hearing aid industry’s transition 1989–2008. Technol Forecast Soc Change 102:160–168. https://doi.org/10.1016/j.techfore.2015.09.006

    Article  Google Scholar 

  6. Jain PK, Jain PK (2021) Use of 3D printing for home applications: a new generation concept. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.12.145

    Article  Google Scholar 

  7. Bi K, Lin D, Liao Y, Wu C-H, Parandoush P (2021) Additive manufacturing embraces big data. Prog Addit Manuf. https://doi.org/10.1007/s40964-021-00172-8

    Article  Google Scholar 

  8. Mahamood RM, Akinlabi ET (2016) Laser additive manufacturing. 3D printing: breakthroughs in research and practice. IGI Global, Hershey, pp 154–171

    Google Scholar 

  9. Leary M (2019) Design for additive manufacturing. Elsevier, Amsterdam

    Google Scholar 

  10. Ali SF, Malik FM, Kececi EF, Bal B (2019) Optimization of additive manufacturing for layer sticking and dimensional accuracy. Additive manufacturing technologies from an optimization perspective. IGI Global, Hershey, pp 185–198

    Chapter  Google Scholar 

  11. Rias AL, Bouchard C, Segonds F, Vayre B, Abed S (2017) Design for additive manufacturing: supporting intrinsic-motivated creativity. Emotional engineering, vol 5. Springer, Cham, pp 99–115

    Chapter  Google Scholar 

  12. Provaggi E, Kalaskar DM (2017) 3D printing families: laser, powder, nozzle based techniques. 3D printing in medicine. Elsevier Inc, Amsterdam, pp 21–42

    Chapter  Google Scholar 

  13. Gaisford S (2017) 3D printed pharmaceutical products. 3D printing in medicine. Elsevier Inc, Amsterdam, pp 155–166

    Chapter  Google Scholar 

  14. Capelli C, Schievano S (2017) Computational analyses and 3D printed models: a combined approach for patient-specific studies. 3D printing in medicine. Elsevier Inc, Amsterdam, pp 73–90

    Chapter  Google Scholar 

  15. Roopavath UK, Kalaskar DM (2017) Introduction to 3D printing in medicine. 3D printing in medicine. Elsevier Inc, Amsterdam, pp 1–20

    Google Scholar 

  16. Sima F, Sugioka K, Vázquez RM, Osellame R, Kelemen L, Ormos P (2018) Three-dimensional femtosecond laser processing for lab-on-a-chip applications. Nanophotonics 7:613–634. https://doi.org/10.1515/nanoph-2017-0097

    Article  Google Scholar 

  17. Mishra PK, Senthil P, Adarsh S, Anoop MS (2021) An investigation to study the combined effect of different infill pattern and infill density on the impact strength of 3D printed polylactic acid parts. Compos Commun 24:100605. https://doi.org/10.1016/j.coco.2020.100605

    Article  Google Scholar 

  18. Agrawaal H, Thompson JE (2021) Additive manufacturing (3D Printing) for analytical chemistry. Talanta Open. https://doi.org/10.1016/j.talo.2021.100036

    Article  Google Scholar 

  19. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos Part B Eng 143:172–196. https://doi.org/10.1016/j.compositesb.2018.02.012

    Article  Google Scholar 

  20. Pazhamannil RV, Govindan P (2021) Current state and future scope of additive manufacturing technologies via vat photopolymerization. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.11.225

    Article  Google Scholar 

  21. Richter S, Wischmann Iit-Berlin S (n.d.) Additive manufacturing methods-state of development, market prospects for industrial use and ICT-specific challenges in research and development: a study within the scope of scientific assistance for the AUTONOMICS for Industry 4.0 technology programme of the Federal Ministry for Economic Affairs and Energy. www.autonomik40.de. Accessed 28 Feb 2021

  22. Qi X, Chen G, Li Y, Cheng X, Li C (2019) Applying neural-network-based machine learning to additive manufacturing: current applications, challenges, and future perspectives. Engineering 5:721–729. https://doi.org/10.1016/j.eng.2019.04.012

    Article  Google Scholar 

  23. Huang DJ, Li H (2021) A machine learning guided investigation of quality repeatability in metal laser powder bed fusion additive manufacturing. Mater Des 203:109606. https://doi.org/10.1016/j.matdes.2021.109606

    Article  Google Scholar 

  24. Jain AK, Lad BK (2017) A novel integrated tool condition monitoring system. J Intell Manuf 30:1423–1436. https://doi.org/10.1007/S10845-017-1334-2

    Article  Google Scholar 

  25. Sharma V, Gupta S, Mehta G, Lad BK (2021) A quantum-based diagnostics approach for additive manufacturing machine. IET Collab Intell Manuf 3:184–192. https://doi.org/10.1049/CIM2.12022

    Article  Google Scholar 

  26. Leary M (2020) Powder bed fusion. Design for additive manufacturing. Elsevier, Amsterdam, pp 295–319

    Chapter  Google Scholar 

  27. Vock S, Klöden B, Kirchner A, Weißgärber T, Kieback B (2019) Powders for powder bed fusion: a review. Prog Addit Manuf 4:383–397. https://doi.org/10.1007/s40964-019-00078-6

    Article  Google Scholar 

  28. Goodridge R, Ziegelmeier S (2017) Powder bed fusion of polymers. Laser additive manufacturing. Elsevier, Amsterdam, pp 181–204

    Chapter  Google Scholar 

  29. Dev Singh D, Mahender T, Raji Reddy A (2021) Powder bed fusion process: a brief review. Mater Today Proc 46:350–355. https://doi.org/10.1016/J.MATPR.2020.08.415

    Article  Google Scholar 

  30. Additive Manufacturing Machines, GE Additive (n.d.) https://www.ge.com/additive/additive-manufacturing/machines. Accessed 27 Feb 2021

  31. High-Quality Industrial Metal 3D Printers, SLM Solutions (n.d.) https://www.slm-solutions.com/products-and-solutions/machines/. Accessed 27 Feb 2021

  32. Metal 3D printer, DMLS Printer, Additive Manufacturing Systems (n.d.) https://www.eos.info/en/additive-manufacturing/3d-printing-metal/eos-metal-systems. Accessed 27 Feb 2021

  33. Narayana PL, Lee S, Choi SW, Li CL, Park CH, Yeom JT, Reddy NS, Hong JK (2019) Microstructural response of β-stabilized Ti–6Al–4V manufactured by direct energy deposition. J Alloys Compd 811:152021. https://doi.org/10.1016/J.JALLCOM.2019.152021

    Article  Google Scholar 

  34. Zenou M, Grainger L (2018) Additive manufacturing of metallic materials. Addit Manuf Mater Process Quantif Appl. https://doi.org/10.1016/B978-0-12-812155-9.00003-7

    Article  Google Scholar 

  35. Khan I, Kumar N (2020) Fused deposition modelling process parameters influence on the mechanical properties of ABS: a review. Mater Today Proc 44:4004–4008. https://doi.org/10.1016/j.matpr.2020.10.202

    Article  Google Scholar 

  36. Piscopo G, Iuliano L (2022) Current research and industrial application of laser powder directed energy deposition. Int J Adv Manuf Technol 2022:1–25. https://doi.org/10.1007/S00170-021-08596-W

    Article  Google Scholar 

  37. Gebisa AW, Lemu HG (2018) Investigating effects of fused-deposition modeling (FDM) processing parameters on flexural properties of ULTEM 9085 using designed experiment. Materials. https://doi.org/10.3390/ma11040500

    Article  Google Scholar 

  38. Sai T, Pathak VK, Srivastava AK (2020) Modeling and optimization of fused deposition modeling (FDM) process through printing PLA implants using adaptive neuro-fuzzy inference system (ANFIS) model and whale optimization algorithm. J Braz Soc Mech Sci Eng 42:617. https://doi.org/10.1007/s40430-020-02699-3

    Article  Google Scholar 

  39. Rahmati S (2014) Direct rapid tooling A2. Comprehensive materials processing. Elsevier, Amsterdam, pp 303–344

    Chapter  Google Scholar 

  40. Levy GN, Schindel R, Kruth JP (2003) Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives. CIRP Ann 52:589–609. https://doi.org/10.1016/S0007-8506(07)60206-6

    Article  Google Scholar 

  41. Pilipović A, Raos P, Šercer M (2009) Experimental analysis of properties of materials for rapid prototyping. Int J Adv Manuf Technol 40:105–115. https://doi.org/10.1007/s00170-007-1310-7

    Article  Google Scholar 

  42. Rigon D, Ricotta M, Meneghetti G (2020) A literature survey on structural integrity of 3D printed virgin and recycled ABS and PP compounds. Procedia Struct Integr 28:1655–1663. https://doi.org/10.1016/J.PROSTR.2020.10.139

    Article  Google Scholar 

  43. Yang Y, Li X, Zheng X, Chen Z, Zhou Q, Chen Y (2018) 3D-printed biomimetic super-hydrophobic structure for microdroplet manipulation and oil/water separation. Adv Mater 30:1704912. https://doi.org/10.1002/ADMA.201704912

    Article  Google Scholar 

  44. Li X, Chen Y (2017) Micro-scale feature fabrication using immersed surface accumulation. J Manuf Process 28:531–540. https://doi.org/10.1016/J.JMAPRO.2017.04.022

    Article  Google Scholar 

  45. Xu X, Awad A, Robles-Martinez P, Gaisford S, Goyanes A, Basit AW (2021) Vat photopolymerization 3D printing for advanced drug delivery and medical device applications. J Control Release 329:743–757. https://doi.org/10.1016/J.JCONREL.2020.10.008

    Article  Google Scholar 

  46. Mao H, Leung Y-S, Li Y, Hu P, Wu W, Chen Y (2017) Multiscale stereolithography using shaped beams. J Micro Nano-Manuf. https://doi.org/10.1115/1.4037832

    Article  Google Scholar 

  47. Pan Y, Zhou C, Chen Y (2012) A fast mask projection stereolithography process for fabricating digital models in minutes. J Manuf Sci Eng. https://doi.org/10.1115/1.4007465

    Article  Google Scholar 

  48. Zhou C, Chen Y (2012) Additive manufacturing based on optimized mask video projection for improved accuracy and resolution. J Manuf Process 14:107–118. https://doi.org/10.1016/J.JMAPRO.2011.10.002

    Article  Google Scholar 

  49. Li X, Mao H, Pan Y, Chen Y (2019) Mask video projection-based stereolithography with continuous resin flow. J Manuf Sci Eng. https://doi.org/10.1115/1.4043765

    Article  Google Scholar 

  50. Tumbleston JR, Shirvanyants D, Ermoshkin N, Janusziewicz R, Johnson AR, Kelly D, Chen K, Pinschmidt R, Rolland JP, Ermoshkin A, Samulski ET, DeSimone JM (2015) Continuous liquid interface production of 3D objects. Science 347:1349–1352. https://doi.org/10.1126/SCIENCE.AAA2397

    Article  Google Scholar 

  51. He H, Yang Y, Pan Y (2019) Machine learning for continuous liquid interface production: printing speed modelling. J Manuf Syst 50:236–246. https://doi.org/10.1016/J.JMSY.2019.01.004

    Article  Google Scholar 

  52. Johnson AR, Caudill CL, Tumbleston JR, Bloomquist CJ, Moga KA, Ermoshkin A, Shirvanyants D, Mecham SJ, Luft JC, De Simone JM (2016) Single-step fabrication of computationally designed microneedles by continuous liquid interface production. PLoS ONE. https://doi.org/10.1371/JOURNAL.PONE.0162518

    Article  Google Scholar 

  53. ASTM International—Standards Worldwide (n.d.) https://www.astm.org/. Accessed 29 Aug 2021

  54. The 7 categories of Additive Manufacturing, Additive Manufacturing Research Group | Loughborough University (n.d.) https://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditivemanufacturing/. Accessed 29 Aug 2021

  55. Designation: F2792—12a (n.d.) https://doi.org/10.1520/F2792-12A.

  56. Udroiu R, Braga IC (2017) Polyjet technology applications for rapid tooling. MATEC Web Conf 112:1–6. https://doi.org/10.1051/matecconf/201711203011

    Article  Google Scholar 

  57. Hassan Saba M, Mukherjee S, Dutta S, Kumar Mallisetty P, Chandra Murmu N (2021) Electrohydrodynamic jet printing for desired print diameter. Mater Today Proc 46:1749–1754. https://doi.org/10.1016/J.MATPR.2020.07.570

    Article  Google Scholar 

  58. Pilipović A, Baršić G, Katić M, Havstad MR (2020) Repeatability and reproducibility assessment of a polyjet technology using X-ray computed tomography. Appl Sci 10:1–14. https://doi.org/10.3390/app10207040

    Article  Google Scholar 

  59. Bagheri A, Jin J (2019) Photopolymerization in 3D printing. ACS Appl Polym Mater 1:593–611. https://doi.org/10.1021/acsapm.8b00165

    Article  Google Scholar 

  60. O’Neill P, Jolivet L, Kent NJ, Brabazon D (2017) Physical integrity of 3D printed parts for use as embossing tools. Adv Mater Process Technol 3:308–317. https://doi.org/10.1080/2374068X.2017.1330842

    Article  Google Scholar 

  61. Gülcan O, Günaydın K, Tamer A (2021) The state of the art of material jetting—a critical review. Polymers (Basel). https://doi.org/10.3390/polym13162829

    Article  Google Scholar 

  62. Revilla-León M, Özcan M (2019) Additive manufacturing technologies used for processing polymers: current status and potential application in prosthetic dentistry. J Prosthodont 28:146–158. https://doi.org/10.1111/jopr.12801

    Article  Google Scholar 

  63. Lee J, An J, Chua CK (2017) Fundamentals and applications of 3D printing for novel materials. Appl Mater Today 7:120–133. https://doi.org/10.1016/j.apmt.2017.02.004

    Article  Google Scholar 

  64. Obikawa T, Yoshino M, Shinozuka J (1999) Sheet steel lamination for rapid manufacturing. J Mater Process Technol 90:171–176

    Article  Google Scholar 

  65. Li Y, Wang S, Tian Q, Ding X (2015) Feature representation for statistical-learning-based object detection: a review. Pattern Recognit 48:3542–3559. https://doi.org/10.1016/j.patcog.2015.04.018

    Article  Google Scholar 

  66. Gu C, Liu C, Zhang J, Huang H, Jia X (2015) Green scheduling for cloud data centers using renewable resources. In: Proceedings of IEEE INFOCOM, Institute of Electrical and Electronics Engineers Inc. pp 354–359. https://doi.org/10.1109/INFCOMW.2015.7179410.

  67. Wang P, Liu H, Wang L, Gao RX (2018) Deep learning-based human motion recognition for predictive context-aware human-robot collaboration. CIRP Ann 67:17–20. https://doi.org/10.1016/j.cirp.2018.04.066

    Article  Google Scholar 

  68. Weimer D, Scholz-Reiter B, Shpitalni M (2016) Design of deep convolutional neural network architectures for automated feature extraction in industrial inspection. CIRP Ann 65:417–420. https://doi.org/10.1016/j.cirp.2016.04.072

    Article  Google Scholar 

  69. Johnson NS, Vulimiri PS, To AC, Zhang X, Brice CA, Kappes BB, Stebner AP (2020) Invited review: machine learning for materials developments in metals additive manufacturing. Addit Manuf 36:101641. https://doi.org/10.1016/j.addma.2020.101641

    Article  Google Scholar 

  70. Rostyslav D, Reinforcement Learning Applications (2020) https://perfectial.com/blog/reinforcement-learning-applications/. Accessed 22 Jan 2021

  71. Nikolaou N, Reeve H, Brown G (2020) Margin maximization as lossless maximal compression. http://arxiv.org/abs/2001.10318. Accessed 29 Mar 2021

  72. Al-Azzam N, Shatnawi I (2021) Comparing supervised and semi-supervised machine learning models on diagnosing breast cancer. Ann Med Surg 62:53–64. https://doi.org/10.1016/j.amsu.2020.12.043

    Article  Google Scholar 

  73. Sun C, Shrivastava A, Singh S, Gupta A (2017) Revisiting unreasonable effectiveness of data in deep learning era

  74. Singh D, Singh B (2020) Investigating the impact of data normalization on classification performance. Appl Soft Comput 97:105524. https://doi.org/10.1016/j.asoc.2019.105524

    Article  Google Scholar 

  75. Späth H (1992) Introduction. Mathematical algorithms for linear regression. Elsevier, Amsterdam, pp 1–15

    MATH  Google Scholar 

  76. Botchkarev A (2018) Performance metrics (error measures) in machine learning regression forecasting and prognostics: properties and typology. Interdiscip J Inf Knowl Manage 14:45–76. https://doi.org/10.28945/4184

    Article  Google Scholar 

  77. Park J, John Park ASD, Mackay S (2003) Practical data acquisition for instrumentation and control systems. Newnes, Boston

    Google Scholar 

  78. Li Y, Yu X, Koudas N (2021) Data acquisition for improving machine learning models. Proc VLDB Endow 14:2150–8097. https://doi.org/10.14778/3467861.3467872

    Article  Google Scholar 

  79. Google AI Blog: Deep learning for detection of diabetic eye disease (n.d.) https://ai.googleblog.com/2016/11/deep-learning-for-detection-of-diabetic.html. Accessed 8 Jan 2022

  80. Roh Y, Heo G, Whang SE (2021) A survey on data collection for machine learning: a big data-ai integration perspective. IEEE Trans Knowl Data Eng 33:1328–1347. https://doi.org/10.1109/TKDE.2019.2946162

    Article  Google Scholar 

  81. Nath V, Levinson SE (2014) Machine learning. https://doi.org/10.1007/978-3-319-05606-7_6

  82. Mohammed M, Khan MB, Bashie EBM (2016) Machine learning: algorithms and applications. CRC Press, Boca Raton, pp 1–204

    Google Scholar 

  83. Aggarwal A, Srivastava A, Agarwal A, Chahal N, Singh D, Alnuaim AA, Alhadlaq A, Lee HN (2022) Two-way feature extraction for speech emotion recognition using deep learning. Sensors 22:2378. https://doi.org/10.3390/S22062378

    Article  Google Scholar 

  84. Smith LN, Topin N (2017) Super-convergence: very fast training of neural networks using large learning rates. Artif Intell Mach Learn Multi-domain Oper Appl. https://doi.org/10.48550/arxiv.1708.07120

    Article  Google Scholar 

  85. Yang L, Shami A (2020) On hyperparameter optimization of machine learning algorithms: theory and practice. Neurocomputing 415:295–316. https://doi.org/10.1016/j.neucom.2020.07.061

    Article  Google Scholar 

  86. IBM Education (2020) What is unsupervised learning?. IBM. pp 1–8. Accessed from https://www.ibm.com/cloud/learn/unsupervised-learning.

  87. Michau G, Fink O (2021) Unsupervised transfer learning for anomaly detection: application to complementary operating condition transfer. Knowl Based Syst 216:106816. https://doi.org/10.1016/j.knosys.2021.106816

    Article  Google Scholar 

  88. Shi Z, Al Mamun A, Kan C, Tian W, Liu C (2022) An LSTM-autoencoder based online side channel monitoring approach for cyber-physical attack detection in additive manufacturing. J Intell Manuf. https://doi.org/10.1007/S10845-021-01879-9

    Article  Google Scholar 

  89. What is reinforcement learning?—MATLAB & Simulink—MathWorks 中国, (n.d.). https://ww2.mathworks.cn/help/reinforcement-learning/ug/what-is-reinforcement-learning.html. Accessed 29 June 2021

  90. Nguyen H, La HM (2019) Review of deep reinforcement learning for robot manipulation. pp 590–595. https://doi.org/10.1109/IRC.2019.00120.

  91. Heuillet A, Couthouis F, Díaz-Rodríguez N (2021) Explainability in deep reinforcement learning. Knowl Based Syst 214:106685. https://doi.org/10.1016/j.knosys.2020.106685

    Article  Google Scholar 

  92. Dharmawan AG, Xiong Y, Foong S, Song Soh G (2020) A model-based reinforcement learning and correction framework for process control of robotic wire arc additive manufacturing. Proc IEEE Int Conf Robot Autom. https://doi.org/10.1109/ICRA40945.2020.9197222

    Article  Google Scholar 

  93. Jiao Y, Du P (2016) Performance measures in evaluating machine learning based bioinformatics predictors for classifications. Quant Biol 4:320–330. https://doi.org/10.1007/s40484-016-0081-2

    Article  Google Scholar 

  94. Cihan P, Coskun H (2021) Performance comparison of machine learning models for diabetes prediction. In: SIU 2021—29th IEEE Conference on Signal Processing and Communications Applications Conference. https://doi.org/10.1109/SIU53274.2021.9477824

  95. Xu Y, Zhou Y, Sekula P, Ding L (2021) Machine learning in construction: from shallow to deep learning. Dev Built Environ 6:100045. https://doi.org/10.1016/j.dibe.2021.100045

    Article  Google Scholar 

  96. Herriott C, Spear AD (2020) Predicting microstructure-dependent mechanical properties in additively manufactured metals with machine- and deep-learning methods. Comput Mater Sci. https://doi.org/10.1016/j.commatsci.2020.109599

    Article  Google Scholar 

  97. Dong S, Wang P, Abbas K (2021) A survey on deep learning and its applications. Comput Sci Rev 40:100379. https://doi.org/10.1016/j.cosrev.2021.100379

    Article  MathSciNet  MATH  Google Scholar 

  98. Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444. https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  99. Li Y, Zhou X, Colnaghi T, Wei Y, Marek A, Li H, Bauer S, Rampp M, Stephenson LT (2021) Convolutional neural network-assisted recognition of nanoscale L12 ordered structures in face-centred cubic alloys. Npj Comput Mater 7:1–9. https://doi.org/10.1038/s41524-020-00472-7

    Article  Google Scholar 

  100. Saishu Y, Poorjam AH, Christensen MG (2021) A CNN-based approach to identification of degradations in speech signals. Eurasip J Audio Speech Music Process 2021:9. https://doi.org/10.1186/s13636-021-00198-4

    Article  Google Scholar 

  101. Esteva A, Chou K, Yeung S, Naik N, Madani A, Mottaghi A, Liu Y, Topol E, Dean J, Socher R (2021) Deep learning-enabled medical computer vision. Npj Digit Med 4:1–9. https://doi.org/10.1038/s41746-020-00376-2

    Article  Google Scholar 

  102. Feng S, Fu H, Zhou H, Wu Y, Lu Z, Dong H (2021) A general and transferable deep learning framework for predicting phase formation in materials. Npj Comput Mater 7:1–10. https://doi.org/10.1038/s41524-020-00488-z

    Article  Google Scholar 

  103. Banga S, Gehani H, Bhilare S, Patel S, Kara L (2018) 3D topology optimization using convolutional neural networks, ArXiv. http://arxiv.org/abs/1808.07440. Accessed 4 Apr 2021

  104. Cang R, Yao H, Ren Y (2019) One-shot generation of near-optimal topology through theory-driven machine learning. CAD Comput Aided Des 109:12–21. https://doi.org/10.1016/j.cad.2018.12.008

    Article  MathSciNet  Google Scholar 

  105. How recurrent neural networks work by Simeon Kostadinov towards data science (n.d.) https://towardsdatascience.com/learn-how-recurrent-neural-networks-work-84e975feaaf7. Accessed 7 Jan 2022

  106. Agatonovic-Kustrin S, Beresford R (2000) Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J Pharm Biomed Anal 22:717–727. https://doi.org/10.1016/S0731-7085(99)00272-1

    Article  Google Scholar 

  107. Kiang MY (2003) Neural networks. Encyclopedia of information systems. Elsevier, Amsterdam, pp 303–315

    Chapter  Google Scholar 

  108. Kussul E, Baidyk T, Wunsch DC (2010) Classical neural networks. Neural networks and micromechanics. Springer, Berlin, pp 7–25

    Chapter  MATH  Google Scholar 

  109. A comprehensive guide to convolutional neural networks—the ELI5 way by Sumit Saha towards data science (n.d.) https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53. Accessed 7 Jan 2022

  110. Kevin Zhou S, Fichtinger G, Rueckert D (2019) Handbook of medical image computing and computer assisted intervention. Elsevier, Amsterdam, pp 1–1043

    Google Scholar 

  111. Computer Vision (2018) https://doi.org/10.1016/C2015-0-05563-0

  112. Reimers C, Requena-Mesa C (2020) Deep learning—an opportunity and a challenge for geo- and astrophysics. Knowledge discovery in big data from astronomy and earth observation. Elsevier, Amsterdam, pp 251–265

    Chapter  Google Scholar 

  113. Nie F, Hu Z, Li X (2018) An investigation for loss functions widely used in machine learning. Commun Inf Syst 18:37–52. https://doi.org/10.4310/cis.2018.v18.n1.a2

    Article  MathSciNet  MATH  Google Scholar 

  114. Bridgelall R (n.d.) Introduction to support vector machines

  115. Tripathi S, Hemachandra N (2018) Scalable linear classiiers based on exponential loss function. ACM Ref Format. https://doi.org/10.1145/3152494.3152521

    Article  Google Scholar 

  116. Duchi J (n.d.) CS229 supplemental lecture notes

  117. De Boer PT, Kroese DP, Rubinstein RY (n.d.) A tutorial on the cross-entropy method

  118. Zhang W, Wang H, Hartmann C, Weber M, Schutte C, Schutte S (2014) Applications of the cross-entropy method to importance sampling and optimal control of diffusions. Soc Ind Appl Math. https://doi.org/10.1137/14096493X

    Article  MATH  Google Scholar 

  119. Botev ZI, Kroese DP (2009) The generalized cross entropy method, with applications to probability density estimation. Methodol Comput Appl Probab 13:1

    Article  MathSciNet  MATH  Google Scholar 

  120. Mozaffar M, Ebrahimi A, Cao J (2020) Toolpath design for additive manufacturing using deep reinforcement learning a preprint

  121. Audibert J, Michiardi P, Guyard F, Marti S, Zuluaga MA (2020) USAD : unsupervised anomaly detection on multivari-ate time series. p 20. https://doi.org/10.1145/3394486.3403392.

  122. Goh GD, Sing SL, Yeong WY (2021) A review on machine learning in 3D printing: applications, potential, and challenges. Springer, Dordrecht

    Google Scholar 

  123. Li Y, Wan J, Liu A, Jiao Y, Rainer R (2022) Data-driven chaos indicator for nonlinear dynamics and applications on storage ring lattice design. Nucl Instrum Methods Phys Res Sect A. https://doi.org/10.1016/j.nima.2021.166060

    Article  Google Scholar 

  124. Hwang SY, Kim Y, Lee JH (2016) Finite element analysis of residual stress distribution in a thick plate joined using two-pole tandem electro-gas welding. J Mater Process Technol 229:349–360. https://doi.org/10.1016/j.jmatprotec.2015.09.037

    Article  Google Scholar 

  125. Khairallah SA, Anderson AT, Rubenchik A, King WE (2016) Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 108:36–45. https://doi.org/10.1016/j.actamat.2016.02.014

    Article  Google Scholar 

  126. Toyserkani E, Khajepour A, Corbin S (2004) 3-D finite element modeling of laser cladding by powder injection: effects of laser pulse shaping on the process. Opt Lasers Eng 41:849–867. https://doi.org/10.1016/S0143-8166(03)00063-0

    Article  Google Scholar 

  127. Dai D, Gu D (2014) Thermal behavior and densification mechanism during selective laser melting of copper matrix composites: Simulation and experiments. Mater Des 55:482–491. https://doi.org/10.1016/j.matdes.2013.10.006

    Article  Google Scholar 

  128. Gouge M, Michaleris P, Denlinger E, Irwin J (2018) The finite element method for the thermo-mechanical modeling of additive manufacturing processes. Thermo-mechanical modeling of additive manufacturing. Elsevier Inc, Amsterdam, pp 19–38

    Chapter  Google Scholar 

  129. Nie P, Ojo OA, Li Z (2014) Numerical modeling of microstructure evolution during laser additive manufacturing of a nickel-based superalloy. Acta Mater 77:85–95. https://doi.org/10.1016/j.actamat.2014.05.039

    Article  Google Scholar 

  130. Michaleris P (2014) Modeling metal deposition in heat transfer analyses of additive manufacturing processes. Finite Elem Anal Des 86:51–60. https://doi.org/10.1016/j.finel.2014.04.003

    Article  Google Scholar 

  131. Jalalahmadi B, Liu J, Liu Z, Vechart A, Weinzapfel N (2021) An integrated computational materials engineering predictive platform for fatigue prediction and qualification of metallic parts built with additive manufacturing. J Tribol. https://doi.org/10.1115/1.4050941

    Article  Google Scholar 

  132. Rajan K (2005) Materials informatics. Mater Today 8:38–45. https://doi.org/10.1016/S1369-7021(05)71123-8

    Article  Google Scholar 

  133. Razvi SS, Feng S, Narayanan A, Lee YTT, Witherell P (2019) IDETC2019-98415 A review of machine learning applications in additive manufacturing.

  134. Jin Z, Zhang Z, Demir K, Gu GX (2020) Machine learning for advanced additive manufacturing. Matter 3:1541–1556. https://doi.org/10.1016/j.matt.2020.08.023

    Article  Google Scholar 

  135. Zhu JH, Zhang WH, Xia L (2016) Topology optimization in aircraft and aerospace structures design. Arch Comput Methods Eng 23:595–622. https://doi.org/10.1007/s11831-015-9151-2

    Article  MathSciNet  MATH  Google Scholar 

  136. Liu Z, Li M, Tay YWD, Weng Y, Wong TN, Tan MJ (2020) Rotation nozzle and numerical simulation of mass distribution at corners in 3D cementitious material printing. Addit Manuf 34:101190. https://doi.org/10.1016/j.addma.2020.101190

    Article  Google Scholar 

  137. Laufer F, Roth D, Binz H (2019) An investigation into the influence of mass distribution on conceptual lightweight design. Procedia CIRP. https://doi.org/10.1016/j.procir.2019.04.304

    Article  Google Scholar 

  138. Cheng B, Chou K (2020) A numerical investigation of support structure designs for overhangs in powder bed electron beam additive manufacturing. J Manuf Process 49:187–195. https://doi.org/10.1016/j.jmapro.2019.11.018

    Article  Google Scholar 

  139. Han Q, Gu H, Soe S, Setchi R, Lacan F, Hill J (2018) Manufacturability of AlSi10Mg overhang structures fabricated by laser powder bed fusion. Mater Des 160:1080–1095. https://doi.org/10.1016/j.matdes.2018.10.043

    Article  Google Scholar 

  140. Vantyghem G, De Corte W, Shakour E, Amir O (2020) 3D printing of a post-tensioned concrete girder designed by topology optimization. Autom Constr 112:103084. https://doi.org/10.1016/j.autcon.2020.103084

    Article  Google Scholar 

  141. Mirzendehdel AM, Suresh K (2016) Support structure constrained topology optimization for additive manufacturing. CAD Comput Aided Des 81:1–13. https://doi.org/10.1016/j.cad.2016.08.006

    Article  Google Scholar 

  142. Mantovani S, Campo GA, Ferrari A (2020) Additive manufacturing and topology optimization: A design strategy for a steering column mounting bracket considering overhang constraints. Proc Inst Mech Eng Part C. https://doi.org/10.1177/0954406220917717

    Article  Google Scholar 

  143. Gaynor AT, Guest JK (2014) Topology optimization for additive manufacturing: Considering maximum overhang constraint. In: AIAA Aviation 2014—15th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, American Institute of Aeronautics and Astronautics Inc., 2014. https://doi.org/10.2514/6.2014-2036

  144. Brackett D, Ashcroft I, Hague R (n.d.) Topology optimization for additive manufacturing

  145. Gu GX, Chen CT, Buehler MJ (2018) De novo composite design based on machine learning algorithm. Extrem Mech Lett 18:19–28. https://doi.org/10.1016/j.eml.2017.10.001

    Article  Google Scholar 

  146. Wilt JK, Yang C, Gu GX (2020) Accelerating auxetic metamaterial design with deep learning. Adv Eng Mater 22:1901266. https://doi.org/10.1002/adem.201901266

    Article  Google Scholar 

  147. Ozguc S, Pan L, Weibel JA (2021) Topology optimization of microchannel heat sinks using a homogenization approach. Int J Heat Mass Transf 169:120896. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120896

    Article  Google Scholar 

  148. Cheng L, Liu J, Liang X, To AC (2018) Coupling lattice structure topology optimization with design-dependent feature evolution for additive manufactured heat conduction design. Comput Methods Appl Mech Eng 332:408–439. https://doi.org/10.1016/j.cma.2017.12.024

    Article  MathSciNet  MATH  Google Scholar 

  149. Vogiatzis P, Chen S, Wang X, Li T, Wang L (2017) Topology optimization of multi-material negative Poisson’s ratio metamaterials using a reconciled level set method. CAD Comput Aided Des 83:15–32. https://doi.org/10.1016/j.cad.2016.09.009

    Article  MathSciNet  Google Scholar 

  150. Tejani GG, Savsani VJ, Patel VK (2016) Adaptive symbiotic organisms search (SOS) algorithm for structural design optimization. J Comput Des Eng 3:226–249. https://doi.org/10.1016/j.jcde.2016.02.003

    Article  Google Scholar 

  151. Tejani GG, Kumar S, Gandomi AH (2021) Multi-objective heat transfer search algorithm for truss optimization. Eng Comput 37:641–662. https://doi.org/10.1007/s00366-019-00846-6

    Article  Google Scholar 

  152. Tejani GG, Savsani VJ, Bureerat S, Patel VK, Savsani P (2019) Topology optimization of truss subjected to static and dynamic constraints by integrating simulated annealing into passing vehicle search algorithms. Eng Comput 35:499–517. https://doi.org/10.1007/s00366-018-0612-8

    Article  Google Scholar 

  153. Kumar S, Kumar R, Agarwal RP, Samet B (2020) A study of fractional Lotka-Volterra population model using Haar wavelet and Adams-Bashforth-Moulton methods. Math Methods Appl Sci 43:5564–5578. https://doi.org/10.1002/mma.6297

    Article  MathSciNet  MATH  Google Scholar 

  154. Tejani GG, Pholdee N, Bureerat S, Prayogo D, Gandomi AH (2019) Structural optimization using multi-objective modified adaptive symbiotic organisms search. Expert Syst Appl 125:425–441. https://doi.org/10.1016/j.eswa.2019.01.068

    Article  Google Scholar 

  155. Gu GX, Chen CT, Richmond DJ, Buehler MJ (2018) Bioinspired hierarchical composite design using machine learning: simulation, additive manufacturing, and experiment. Mater Horizons 5:939–945. https://doi.org/10.1039/c8mh00653a

    Article  Google Scholar 

  156. Singh K, Kapania RK (2021) Accelerated optimization of curvilinearly stiffened panels using deep learning. Thin-Walled Struct 161:107418. https://doi.org/10.1016/j.tws.2020.107418

    Article  Google Scholar 

  157. Singh K, Zhao W, Jrad M, Kapania RK (2019) Hybrid optimization of curvilinearly stiffened shells using parallel processing. J Aircr 56:1068–11079. https://doi.org/10.2514/1.C035069

    Article  Google Scholar 

  158. MSC Nastran (n.d.) https://www.mscsoftware.com/de/product/msc-nastran. Accessed 17 Apr 2021

  159. Sosnovik I, Oseledets I (2019) Neural networks for topology optimization. Russ J Numer Anal Math Model 34:215–223. https://doi.org/10.1515/RNAM-2019-0018

    Article  MathSciNet  MATH  Google Scholar 

  160. Harish B, Eswara Sai Kumar K, Srinivasan B (2020) Topology optimization using convolutional neural network. Advances in multidisciplinary analysis and optimization. Springer, Singapore, pp 301–307

    Chapter  Google Scholar 

  161. Grierson D, Rennie AEW, Quayle SD, Agarwal R, Ruta G (2021) Machine learning for additive manufacturing. Encyclopedia. https://doi.org/10.3390/encyclopedia1030048

    Article  Google Scholar 

  162. Shi Y, Zhang Y, Baek S, De Backer W, Harik R (2018) Manufacturability analysis for additive manufacturing using a novel feature recognition technique. CAD Solut LLC 15:941–952. https://doi.org/10.1080/16864360.2018.1462574

    Article  Google Scholar 

  163. Williams G, Meisel NA, Simpson TW, McComb C (2019) Design repository effectiveness for 3D convolutional neural networks: application to additive manufacturing. J Mech Des Trans ASME 141:1–12. https://doi.org/10.1115/1.4044199

    Article  Google Scholar 

  164. Yao X, Moon SK, Bi G (2017) A hybrid machine learning approach for additive manufacturing design feature recommendation. Rapid Prototyp J 23:983–997. https://doi.org/10.1108/RPJ-03-2016-0041

    Article  Google Scholar 

  165. Huang Q, Nouri H, Xu K, Chen Y, Sosina S, Dasgupta T (2014) Statistical predictive modeling and compensation of geometric deviations of three-dimensional printed products. J Manuf Sci Eng Trans ASME 136:1–10. https://doi.org/10.1115/1.4028510

    Article  Google Scholar 

  166. Zhu Z, Anwer N, Huang Q, Mathieu L (2018) Machine learning in tolerancing for additive manufacturing. CIRP Ann 67:157–160. https://doi.org/10.1016/j.cirp.2018.04.119

    Article  Google Scholar 

  167. Ghadai S, Balu A, Krishnamurthy A, Sarkar S (2017) Learning and visualizing localized geometric features using 3D-CNN: an application to manufacturability analysis of drilled holes. Accessed from http://arxiv.org/abs/1711.04851.

  168. Lederer A, Conejo AJ, Maier KA, Xiao W, Umlauft J, Hirche S (2021) Gaussian process-based real-time learning for safety critical applications

  169. Guo Liu JL, Zhang X (2021) Additive manufacturing of structural materials. Mater Sci Eng R Rep. https://doi.org/10.1016/j.mser.2020.100596

    Article  Google Scholar 

  170. Additive Manufacturing Materials, Additive Manufacturing (n.d.) https://www.additivemanufacturing.media/kc/what-is-additive-manufacturing/am-materials. Accessed 28 May 2022

  171. Hannifin P (2022) Solve the mysteries of the universe. 29: 1–60

  172. Hoon Kang S, Lemes Jorge V, Ribeiro Teixeira F, Scotti A (2022) Pyrometrical interlayer temperature measurement in WAAM of thin wall: strategies, limitations and functionality. Metals 12:765. https://doi.org/10.3390/MET12050765

    Article  Google Scholar 

  173. Tagawa Y, Maskeliūnas R, Damaševičius R (2021) Acoustic anomaly detection of mechanical failures in noisy real-life factory environments. Electronics 10:2329. https://doi.org/10.3390/ELECTRONICS10192329

    Article  Google Scholar 

  174. Guo AXY, Cheng L, Zhan S, Zhang S, Xiong W, Wang Z, Wang G, Cao SC (2022) Biomedical applications of the powder-based 3D printed titanium alloys: a review. J Mater Sci Technol 125:252–264. https://doi.org/10.1016/J.JMST.2021.11.084

    Article  Google Scholar 

  175. Liu J, Ye J, Momin F, Zhang X, Li A (2022) Nonparametric Bayesian framework for material and process optimization with nanocomposite fused filament fabrication. Addit Manuf 54:102765. https://doi.org/10.1016/J.ADDMA.2022.102765

    Article  Google Scholar 

  176. Zhang X, Saniie J, Bakhtiari S, Heifetz A (2022) Compression of pulsed infrared thermography data with unsupervised learning for nondestructive evaluation of additively manufactured metals. IEEE Access 10:9094–9107. https://doi.org/10.1109/ACCESS.2022.3141654

    Article  Google Scholar 

  177. Busachi A, Erkoyuncu J, Colegrove P, Martina F, Watts C, Drake R (2017) A review of additive manufacturing technology and cost estimation techniques for the defence sector. CIRP J Manuf Sci Technol 19:117–128. https://doi.org/10.1016/j.cirpj.2017.07.001

    Article  Google Scholar 

  178. Verlinden B, Duflou JR, Collin P, Cattrysse D (2008) Cost estimation for sheet metal parts using multiple regression and artificial neural networks: a case study. Int J Prod Econ 111:484–492. https://doi.org/10.1016/j.ijpe.2007.02.004

    Article  Google Scholar 

  179. Niazi A, Dai JS, Balabani S, Seneviratne L (2006) Product cost estimation: technique classification and methodology review. J Manuf Sci Eng Trans ASME 128:563–575. https://doi.org/10.1115/1.2137750

    Article  Google Scholar 

  180. Bikmukhametov T, Jäschke J (2020) Combining machine learning and process engineering physics towards enhanced accuracy and explainability of data-driven models R. Comput Chem Eng. https://doi.org/10.1016/j.compchemeng.2020.106834

    Article  Google Scholar 

  181. Deng S, Yeh TH (2011) Using least squares support vector machines for the airframe structures manufacturing cost estimation. Int J Prod Econ 131:701–708. https://doi.org/10.1016/j.ijpe.2011.02.019

    Article  Google Scholar 

  182. Sajadfar N, Ma Y (2015) A hybrid cost estimation framework based on feature-oriented data mining approach. Adv Eng Inform 29:633–647. https://doi.org/10.1016/j.aei.2015.06.001

    Article  Google Scholar 

  183. Chan SL, Lu Y, Wang Y (2018) Data-driven cost estimation for additive manufacturing in cybermanufacturing. J Manuf Syst 46:115–126. https://doi.org/10.1016/j.jmsy.2017.12.001

    Article  Google Scholar 

  184. Kai C, Leong S (2020) Microstructure evolution and mechanical property response via 3D printing parameter development of Al–Sc alloy. Virtual Phys Prototyp. https://doi.org/10.1080/17452759.2019.1698967

    Article  Google Scholar 

  185. Jiang J, Xiong Y, Zhang Z, Rosen DW (2020) Machine learning integrated design for additive manufacturing. J Intell Manuf. https://doi.org/10.1007/s10845-020-01715-6

    Article  Google Scholar 

  186. Rosen DW, Rosen DW (2014) Research supporting principles for design for additive manufacturing and strategies for AM research supporting principles for design for additive manufacturing: this paper provides a comprehensive review on current design principles and strategies for AM. Virtual Phys Prototyp 9:225–232. https://doi.org/10.1080/17452759.2014.951530

    Article  Google Scholar 

  187. Gardner JM, Hunt KA, Ebel AB, Rose ES, Zylich SC, Jensen BD, Wise KE, Siochi EJ, Sauti G (2019) Machines as craftsmen: localized parameter setting optimization for fused filament fabrication 3D printing. Adv Mater Technol 4:1800653. https://doi.org/10.1002/admt.201800653

    Article  Google Scholar 

  188. Deka A, Behdad S (2019) Part separation technique for assembly-based design in additive manufacturing using genetic algorithm. Proc Manuf 2019:764–771. https://doi.org/10.1016/j.promfg.2019.06.208

    Article  Google Scholar 

  189. Abarghooei H, Arabi H, Seyedein SH, Mirzakhani B (2017) Modeling of steady state hot flow behavior of API-X70 microalloyed steel using genetic algorithm and design of experiments. Appl Soft Comput J 52:471–477. https://doi.org/10.1016/j.asoc.2016.10.021

    Article  Google Scholar 

  190. Kumar K, Zindani D, Davim P (2019) Sustainable engineering products and manufacturing technologies. Elsevier, Amsterdam

    MATH  Google Scholar 

  191. Mohamed OA, Masood SH, Bhowmik JL (2017) Influence of processing parameters on creep and recovery behavior of FDM manufactured part using definitive screening design and ANN. Rapid Prototyp J 23:998–1010. https://doi.org/10.1108/RPJ-12-2015-0198

    Article  Google Scholar 

  192. Jiang J, Hu G, Li X, Xu X, Zheng P, Stringer J (2019) Analysis and prediction of printable bridge length in fused deposition modelling based on back propagation neural network. Virtual Phys Prototyp 14:253–266. https://doi.org/10.1080/17452759.2019.1576010

    Article  Google Scholar 

  193. Omar A, Syed H, Jahar L (2016) Processed by fused deposition modeling additive manufacturing. Adv Prod Eng Manage 11:227–238

    Google Scholar 

  194. Bayraktar Ö, Uzun G, Çakiroğlu R, Guldas A (2017) Experimental study on the 3D-printed plastic parts and predicting the mechanical properties using artificial neural networks. Polym Adv Technol 28:1044–1051. https://doi.org/10.1002/pat.3960

    Article  Google Scholar 

  195. Sood AK, Equbal A, Toppo V, Ohdar RK, Mahapatra SS (2012) An investigation on sliding wear of FDM built parts. CIRP J Manuf Sci Technol 5:48–54. https://doi.org/10.1016/j.cirpj.2011.08.003

    Article  Google Scholar 

  196. Sood AK, Ohdar RK, Mahapatra SS (2012) Experimental investigation and empirical modelling of FDM process for compressive strength improvement. J Adv Res 3:81–90. https://doi.org/10.1016/j.jare.2011.05.001

    Article  Google Scholar 

  197. Moradi M, SalehMeiabadi M, Moghadam MK, Ardabili S, Band SS, Mosavi A (2020) Enhancing 3D printing producibility in polylactic acid using fused filament fabrication and machine learning. Mapp Intim. https://doi.org/10.20944/preprints202012.0487.v1

    Article  Google Scholar 

  198. Zhang M, Sun CN, Zhang X, Goh PC, Wei J, Hardacre D, Li H (2019) High cycle fatigue life prediction of laser additive manufactured stainless steel: a machine learning approach. Int J Fatigue 128:105194. https://doi.org/10.1016/j.ijfatigue.2019.105194

    Article  Google Scholar 

  199. Tapia G, Khairallah S, Matthews M, King WE, Elwany A (2018) Gaussian process-based surrogate modeling framework for process planning in laser powder-bed fusion additive manufacturing of 316L stainless steel. Int J Adv Manuf Technol 94:3591–3603. https://doi.org/10.1007/s00170-017-1045-z

    Article  Google Scholar 

  200. Tapia G, Elwany AH, Sang H (2016) Prediction of porosity in metal-based additive manufacturing using spatial Gaussian process models. Addit Manuf 12:282–290. https://doi.org/10.1016/j.addma.2016.05.009

    Article  Google Scholar 

  201. Aoyagi K, Wang H, Sudo H, Chiba A (2019) Simple method to construct process maps for additive manufacturing using a support vector machine. Addit Manuf 27:353–362. https://doi.org/10.1016/j.addma.2019.03.013

    Article  Google Scholar 

  202. Wang C, Tan XP, Tor SB, Lim CS (2020) Machine learning in additive manufacturing: state-of-the-art and perspectives. Addit Manuf 36:101538. https://doi.org/10.1016/j.addma.2020.101538

    Article  Google Scholar 

  203. Chowdhury S, Anand S (2016) Artificial neural network based geometric compensation for thermal deformation in additive manufacturing processes. ASME Int. https://doi.org/10.1115/msec2016-8784

    Article  Google Scholar 

  204. Liu S, Shin YC (2019) Additive manufacturing of Ti6Al4V alloy: a review. Mater Des 164:107552. https://doi.org/10.1016/J.MATDES.2018.107552

    Article  Google Scholar 

  205. Khorasani AM, Gibson I, Awan US, Ghaderi A (2019) The effect of SLM process parameters on density, hardness, tensile strength and surface quality of Ti-6Al-4V. Addit Manuf 25:176–186. https://doi.org/10.1016/J.ADDMA.2018.09.002

    Article  Google Scholar 

  206. Majumdar T, Bazin T, Ribeiro EMC, Frith JE, Birbilis N (2019) Understanding the effects of PBF process parameter interplay on Ti-6Al-4V surface properties. PLoS ONE 14:e0221198. https://doi.org/10.1371/JOURNAL.PONE.0221198

    Article  Google Scholar 

  207. Egan DS, Dowling DP (2019) Influence of process parameters on the correlation between in-situ process monitoring data and the mechanical properties of Ti-6Al-4V non-stochastic cellular structures. Addit Manuf 30:100890. https://doi.org/10.1016/J.ADDMA.2019.100890

    Article  Google Scholar 

  208. Levkulich NC, Semiatin SL, Gockel JE, Middendorf JR, DeWald AT, Klingbeil NW (2019) The effect of process parameters on residual stress evolution and distortion in the laser powder bed fusion of Ti-6Al-4V. Addit Manuf 28:475–484. https://doi.org/10.1016/J.ADDMA.2019.05.015

    Article  Google Scholar 

  209. Aslani K-E, Kitsakis K, Kechagias JD, Vaxevanidis NM, Manolakos DE (2020) On the application of grey Taguchi method for benchmarking the dimensional accuracy of the PLA fused filament fabrication process. SN Appl Sci 2(6):1–11. https://doi.org/10.1007/S42452-020-2823-Z

    Article  Google Scholar 

  210. Aslani KE, Vakouftsi F, Kechagias JD, Mastorakis NE (2019) Surface roughness optimization of poly-jet 3D printing using Grey Taguchi method. In: 2019 3rd International Conference on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO). pp 213–218. https://doi.org/10.1109/ICCAIRO47923.2019.00041.

  211. Narayana PL, Kim JH, Lee J, Choi S-W, Lee S, Park CH, Yeom J-T, Reddy NGS, Hong J-K (2021) Optimization of process parameters for direct energy deposited Ti-6Al-4V alloy using neural networks. Int J Adv Manuf Technol 114:3269–3283. https://doi.org/10.1007/S00170-021-07115-1

    Article  Google Scholar 

  212. Reddy NS, Panigrahi BB, Ho CM, Kim JH, Lee CS (2015) Artificial neural network modeling on the relative importance of alloying elements and heat treatment temperature to the stability of α and β phase in titanium alloys. Comput Mater Sci 107:175–183. https://doi.org/10.1016/J.COMMATSCI.2015.05.026

    Article  Google Scholar 

  213. Lang V (2021) Data-based process development and control in multi-material jetting technology. Ceram Appl 9:53–57

    Google Scholar 

  214. Sander G, Babu AP, Gao X, Jiang D, Birbilis N (2021) On the effect of build orientation and residual stress on the corrosion of 316L stainless steel prepared by selective laser melting. Corros Sci 179:109149. https://doi.org/10.1016/j.corsci.2020.109149

    Article  Google Scholar 

  215. Zhang B, Dembinski L, Coddet C (2013) The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316L powder. Mater Sci Eng A 584:21–31. https://doi.org/10.1016/j.msea.2013.06.055

    Article  Google Scholar 

  216. Liu Q, Wu H, Paul MJ, He P, Peng Z, Gludovatz B, Kruzic JJ, Wang CH, Li X (2020) Machine-learning assisted laser powder bed fusion process optimization for AlSi10Mg: new microstructure description indices and fracture mechanisms. Acta Mater 201:316–328. https://doi.org/10.1016/j.actamat.2020.10.010

    Article  Google Scholar 

  217. Kamath C, Fan YJ (2018) Regression with small data sets: a case study using code surrogates in additive manufacturing. Knowl Inf Syst 57:475–493. https://doi.org/10.1007/s10115-018-1174-1

    Article  Google Scholar 

  218. Fang SF, Wang MP, Song M (2009) An approach for the aging process optimization of Al-Zn-Mg-Cu series alloys. Mater Des 30:2460–2467. https://doi.org/10.1016/j.matdes.2008.10.008

    Article  Google Scholar 

  219. Read N, Wang W, Essa K, Attallah MM (2015) Selective laser melting of AlSi10Mg alloy: process optimisation and mechanical properties development. Mater Des 65:417–424. https://doi.org/10.1016/j.matdes.2014.09.044

    Article  Google Scholar 

  220. Zhang Z, Liu Z, Wu D (2020) Prediction of melt pool temperature in directed energy deposition using machine learning. Addit Manuf 37:101692. https://doi.org/10.1016/j.addma.2020.101692

    Article  Google Scholar 

  221. Omar S, Ngadi A, Jebur HH (2013) Machine learning techniques for anomaly detection: an overview. Int J Comput Appl 79:33–41. https://doi.org/10.5120/13715-1478

    Article  Google Scholar 

  222. Jin Z, Zhang Z, Ott J, Gu GX (2021) Precise localization and semantic segmentation detection of printing conditions in fused filament fabrication technologies using machine learning. Addit Manuf 37:101696. https://doi.org/10.1016/j.addma.2020.101696

    Article  Google Scholar 

  223. Wang P, Yang Y, Moghaddam NS (2022) Process modeling in laser powder bed fusion towards defect detection and quality control via machine learning: the state-of-the-art and research challenges. J Manuf Process 73:961–984. https://doi.org/10.1016/J.JMAPRO.2021.11.037

    Article  Google Scholar 

  224. Ye Z, Liu C, Tian W, Kan C (2021) In-situ point cloud fusion for layer-wise monitoring of additive manufacturing. J Manuf Syst 61:210–222. https://doi.org/10.1016/j.jmsy.2021.09.002

    Article  Google Scholar 

  225. Egan DS, Ryan CM, Parnell AC, Dowling DP (2021) Using in-situ process monitoring data to identify defective layers in Ti-6Al-4V additively manufactured porous biomaterials. J Manuf Process 64:1248–1254. https://doi.org/10.1016/j.jmapro.2021.03.002

    Article  Google Scholar 

  226. Qin J, Hu F, Liu Y, Witherell P, Wang CCL, Rosen DW, Simpson TW, Lu Y, Tang Q (2022) Research and application of machine learning for additive manufacturing. Addit Manuf 52:102691. https://doi.org/10.1016/j.addma.2022.102691

    Article  Google Scholar 

  227. Kodaira Y, Miura T, Ito S, Emori K, Yonezu A, Nagatsuka H (2021) Evaluation of crack propagation behavior of porous polymer membranes. Polym Test 96:107124. https://doi.org/10.1016/j.polymertesting.2021.107124

    Article  Google Scholar 

  228. Yang K, Yu L, Xia M, Xu T, Li W (2021) Nonlinear RANSAC with crossline correction: an algorithm for vision-based curved cable detection system. Opt Lasers Eng 141:106417. https://doi.org/10.1016/j.optlaseng.2020.106417

    Article  Google Scholar 

  229. Muhammad W, Brahme AP, Ibragimova O, Kang J, Inal K (2021) A machine learning framework to predict local strain distribution and the evolution of plastic anisotropy & fracture in additively manufactured alloys. Int J Plast 136:102867. https://doi.org/10.1016/j.ijplas.2020.102867

    Article  Google Scholar 

  230. Muñoz JA, Pavlov M, Cheverikin V, Komissarov A, Gromov A (2021) Heterogeneity consequences on the mechanical and microstructural evolution of an AlSi11Cu alloy obtained by selective laser melting. Mater Charact 174:110989. https://doi.org/10.1016/j.matchar.2021.110989

    Article  Google Scholar 

  231. Ghoncheh MH, Sanjari M, Zoeram AS, Cyr E, Amirkhiz BS, Lloyd A, Haghshenas M, Mohammadi M (2021) On the microstructure and solidification behavior of new generation additively manufactured Al-Cu-Mg-Ag-Ti-B alloys. Addit Manuf 37:101724. https://doi.org/10.1016/j.addma.2020.101724

    Article  Google Scholar 

  232. Gur S, Wolf L, Golgher L, Blinder P (2019) Unsupervised microvascular image segmentation using an active contours mimicking neural network. In: Proceedings of the IEEE/CVF international conference on computer vision. pp 10721–10730. https://doi.org/10.1109/ICCV.2019.01082.

  233. Koch G (2015) Siamese neural networks for one-shot image recognition,

  234. Pan Y, He H, Xu J, Feinerman A (2017) Study of separation force in constrained surface projection stereolithography. Rapid Prototyp J 23:353–361. https://doi.org/10.1108/RPJ-12-2015-0188

    Article  Google Scholar 

  235. He H, Xu J, Yu X, Pan Y (2018) Effect of constrained surface texturing on separation force in projection stereolithography. J Manuf Sci Eng. https://doi.org/10.1115/1.4040322

    Article  Google Scholar 

  236. Xu W, Jambhulkar S, Zhu Y, Ravichandran D, Kakarla M, Vernon B, Lott DG, Cornella JL, Shefi O, Miquelard-Garnier G, Yang Y, Song K (2021) 3D printing for polymer/particle-based processing: a review. Compos Part B Eng 223:109102. https://doi.org/10.1016/J.COMPOSITESB.2021.109102

    Article  Google Scholar 

  237. Mostafaei A, Stevens EL, Hughes ET, Biery SD, Hilla C, Chmielus M (2016) Powder bed binder jet printed alloy 625: densification, microstructure and mechanical properties. Mater Des 108:126–135. https://doi.org/10.1016/J.MATDES.2016.06.067

    Article  Google Scholar 

  238. Yegyan Kumar A, Wang J, Bai Y, Huxtable ST, Williams CB (2019) Impacts of process-induced porosity on material properties of copper made by binder jetting additive manufacturing. Mater Des 182:108001. https://doi.org/10.1016/J.MATDES.2019.108001

    Article  Google Scholar 

  239. Zhu Y, Wu Z, Hartley WD, Sietins JM, Williams CB, Yu HZ (2020) Unraveling pore evolution in post-processing of binder jetting materials: X-ray computed tomography, computer vision, and machine learning. Addit Manuf 34:101183. https://doi.org/10.1016/J.ADDMA.2020.101183

    Article  Google Scholar 

  240. Mostafaei A, Toman J, Stevens EL, Hughes ET, Krimer YL, Chmielus M (2017) Microstructural evolution and mechanical properties of differently heat-treated binder jet printed samples from gas- and water-atomized alloy 625 powders. Acta Mater 124:280–289. https://doi.org/10.1016/J.ACTAMAT.2016.11.021

    Article  Google Scholar 

  241. Mohammad S, Hojjatzadeh H, Parab ND, Yan W, Guo Q, Xiong L, Zhao C, Qu M, Escano LI, Xiao X, Fezzaa K, Everhart W, Sun T, Chen L (2019) Pore elimination mechanisms during 3D printing of metals. Nat Commun. https://doi.org/10.1038/s41467-019-10973-9

    Article  Google Scholar 

  242. Everton SK, Hirsch M, Stavroulakis PI, Leach RK, Clare AT (2016) Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Mater Des 95:431–445. https://doi.org/10.1016/J.MATDES.2016.01.099

    Article  Google Scholar 

  243. Lu QY, Wong CH (2018) Additive manufacturing process monitoring and control by non-destructive testing techniques: challenges and in-process monitoring. Virtual Phys Prototyp 13:39–48. https://doi.org/10.1080/17452759.2017.1351201

    Article  Google Scholar 

  244. Landron C, Maire E, Bouaziz O, Adrien J, Lecarme L, Bareggi A (2011) Validation of void growth models using X-ray microtomography characterization of damage in dual phase steels. Acta Mater 59:7564–7573. https://doi.org/10.1016/J.ACTAMAT.2011.08.046

    Article  Google Scholar 

  245. Cai X, Malcolm AA, Wong BS, Fan Z (2015) Measurement and characterization of porosity in aluminium selective laser melting parts using X-ray CT. Virtual Phys Prototy 10:195–206. https://doi.org/10.1080/17452759.2015.1112412

    Article  Google Scholar 

  246. Flodberg G, Pettersson H, Yang L (2018) Pore analysis and mechanical performance of selective laser sintered objects. Addit Manuf 24:307–315. https://doi.org/10.1016/J.ADDMA.2018.10.001

    Article  Google Scholar 

  247. Dimiduk DM, Holm EA, Niezgoda SR (2018) Perspectives on the impact of machine learning, deep learning, and artificial intelligence on materials, processes, and structures engineering. Integr Mater Manuf Innov 7(3):157–172. https://doi.org/10.1007/S40192-018-0117-8

    Article  Google Scholar 

  248. Cha Y-J, Choi W, Büyüköztürk O (2017) Deep learning-based crack damage detection using convolutional neural networks. Comput Civ Infrastruct Eng 32:361–378. https://doi.org/10.1111/MICE.12263

    Article  Google Scholar 

  249. Cunningham R, Narra SP, Montgomery C, Beuth J, Rollett AD (2017) Synchrotron-based X-ray microtomography characterization of the effect of processing variables on porosity formation in laser power-bed additive manufacturing of Ti-6Al-4V. JOM. https://doi.org/10.1007/s11837-016-2234-1

    Article  Google Scholar 

  250. Romano S, Brandão A, Gumpinger J, Gschweitl M, Beretta S (2017) Qualification of AM parts: extreme value statistics applied to tomographic measurements. Mater Des 131:32–48. https://doi.org/10.1016/J.MATDES.2017.05.091

    Article  Google Scholar 

  251. Wu Z, Alorf A, Yang T, Li L, Zhu Y (2019) Robust X-ray sparse-view phase tomography via hierarchical synthesis convolutional neural networks. https://arxiv.org/abs/1901.10644v1. Accessed 31 Aug 2021

  252. Jolliffe IT, Cadima J (2016) Principal component analysis: a review and recent developments. Philos Trans R Soc A 374:2065. https://doi.org/10.1098/RSTA.2015.0202

    Article  MathSciNet  MATH  Google Scholar 

  253. Cramer CL, Nandwana P, Lowden RA, Elliott AM (2019) Infiltration studies of additive manufacture of WC with Co using binder jetting and pressureless melt method. Addit Manuf 28:333–343. https://doi.org/10.1016/J.ADDMA.2019.04.009

    Article  Google Scholar 

  254. Mostafaei A, Rodriguez De Vecchis P, Nettleship I, Chmielus M (2019) Effect of powder size distribution on densification and microstructural evolution of binder-jet 3D-printed alloy 625. Mater Des 162:375–383. https://doi.org/10.1016/J.MATDES.2018.11.051

    Article  Google Scholar 

  255. Khanzadeh M, Chowdhury S, Marufuzzaman M, Tschopp MA, Bian L (2018) Porosity prediction: supervised-learning of thermal history for direct laser deposition. J Manuf Syst 47:69–82. https://doi.org/10.1016/j.jmsy.2018.04.001

    Article  Google Scholar 

  256. Li Y, Shi Z, Liu C, Tian W, Kong Z, Williams CB (2021) Augmented time regularized generative adversarial network (ATR-GAN) for data augmentation in online process anomaly detection. IEEE Trans Autom Sci Eng. https://doi.org/10.1109/TASE.2021.3118635

    Article  Google Scholar 

  257. Becker P, Roth C, Roennau A, Dillmann R (2020) Acoustic anomaly detection in additive manufacturing with long short-term memory neural networks. IEEE 7th Int Conf Ind Eng Appl ICIEA 2020:921–926. https://doi.org/10.1109/ICIEA49774.2020.9102002

    Article  Google Scholar 

  258. Print Quality Guide, (n.d.). https://www.simplify3d.com/support/print-quality-troubleshooting/. Accessed 1 June 2022

  259. Datsiou KC, Spirrett F, Ashcroft I, Magallanes M, Christie S, Goodridge R (2021) Laser powder bed fusion of soda lime silica glass: optimisation of processing parameters and evaluation of part properties. Addit Manuf 39:101880. https://doi.org/10.1016/j.addma.2021.101880

    Article  Google Scholar 

  260. Vaithilingam J, Goodridge RD, Hague RJM, Christie SDR, Edmondson S (2016) The effect of laser remelting on the surface chemistry of Ti6al4V components fabricated by selective laser melting. J Mater Process Technol 232:1–8. https://doi.org/10.1016/j.jmatprotec.2016.01.022

    Article  Google Scholar 

  261. Snow Z, Diehl B, Reutzel EW, Nassar A (2021) Toward in-situ flaw detection in laser powder bed fusion additive manufacturing through layerwise imagery and machine learning. J Manuf Syst 59:12–26. https://doi.org/10.1016/j.jmsy.2021.01.008

    Article  Google Scholar 

  262. Baumgartl H, Tomas J, Buettner R, Merkel M (2020) A deep learning-based model for defect detection in laser-powder bed fusion using in-situ thermographic monitoring. Prog Addit Manuf 5:277–285. https://doi.org/10.1007/s40964-019-00108-3

    Article  Google Scholar 

  263. Scime L, Beuth J (2018) Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm. Addit Manuf 19:114–126. https://doi.org/10.1016/j.addma.2017.11.009

    Article  Google Scholar 

  264. Mojahed Yazdi R, Imani F, Yang H (2020) A hybrid deep learning model of process-build interactions in additive manufacturing. J Manuf Syst 57:460–468. https://doi.org/10.1016/j.jmsy.2020.11.001

    Article  Google Scholar 

  265. Tammas-Williams S, Withers PJ, Todd I, Prangnell PB (2017) The influence of porosity on fatigue crack initiation in additively manufactured titanium components. Sci Rep 7:1–13. https://doi.org/10.1038/s41598-017-06504-5

    Article  Google Scholar 

  266. Beretta S, Romano S (2017) A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes. Int J Fatigue 94:178–191. https://doi.org/10.1016/j.ijfatigue.2016.06.020

    Article  Google Scholar 

  267. Masuo H, Tanaka Y, Morokoshi S, Yagura H, Uchida T, Yamamoto Y, Murakami Y (2018) Influence of defects, surface roughness and HIP on the fatigue strength of Ti-6Al-4V manufactured by additive manufacturing. Int J Fatigue 117:163–179. https://doi.org/10.1016/j.ijfatigue.2018.07.020

    Article  Google Scholar 

  268. Nassar AR, Gundermann MA, Reutzel EW, Guerrier P, Krane MH, Weldon MJ (2019) Formation processes for large ejecta and interactions with melt pool formation in powder bed fusion additive manufacturing. Sci Rep 9:1–11. https://doi.org/10.1038/s41598-019-41415-7

    Article  Google Scholar 

  269. Gobert C, Reutzel EW, Petrich J, Nassar AR, Phoha S (2018) Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging. Addit Manuf 21:517–528. https://doi.org/10.1016/J.ADDMA.2018.04.005

    Article  Google Scholar 

  270. Morgan JP (2019) Data fusion for additive manufacturing inspection

  271. Liu R, Liu S, Zhang X (2021) A physics-informed machine learning model for porosity analysis in laser powder bed fusion additive manufacturing. Int J Adv Manuf Technol 113:1943–1958. https://doi.org/10.1007/s00170-021-06640-3

    Article  Google Scholar 

  272. Ward L, Agrawal A, Choudhary A, Wolverton C (2016) A general-purpose machine learning framework for predicting properties of inorganic materials. Npj Comput Mater 2:1–7. https://doi.org/10.1038/npjcompumats.2016.28

    Article  Google Scholar 

  273. Dong G, Leong S, Fang Y, Li J, Thong J, Kai Z, Reddy S, Yee W (2021) Machine learning for 3D printed multi-materials tissue-mimicking anatomical models. Mater Des 211:110125

    Article  Google Scholar 

  274. Karmuhilan M, Sood AK (2018) Intelligent process model for bead geometry prediction in WAAM. Mater Today Proc 5:24005–24013. https://doi.org/10.1016/j.matpr.2018.10.193

    Article  Google Scholar 

  275. Chaparro BM, Thuillier S, Menezes LF, Manach PY, Fernandes JV (2008) Material parameters identification: gradient-based, genetic and hybrid optimization algorithms. Comput Mater Sci 44:339–346. https://doi.org/10.1016/j.commatsci.2008.03.028

    Article  Google Scholar 

  276. Liu S, Stebner AP, Kappes BB, Zhang X (2021) Machine learning for knowledge transfer across multiple metals additive manufacturing printers. Addit Manuf 39:101877. https://doi.org/10.1016/j.addma.2021.101877

    Article  Google Scholar 

  277. Singh A, Nath A, Shekhar Roy S, Kumar Lohar A (2022) Modeling of laser aided direct metal deposition of stainless steel using supervised deep learning algorithms. Mater Today Proc. https://doi.org/10.1016/J.MATPR.2022.03.468

    Article  Google Scholar 

  278. Ni J, Ling H, Zhang S, Wang Z, Peng Z, Benyshek C, Zan R, Miri AK, Li Z, Zhang X, Lee J, Lee KJ, Kim HJ, Tebon P, Hoffman T, Dokmeci MR, Ashammakhi N, Li X, Khademhosseini A (2019) Three-dimensional printing of metals for biomedical applications. Mater Today Bio 3:100024. https://doi.org/10.1016/J.MTBIO.2019.100024

    Article  Google Scholar 

  279. Ni L, Wang D, Wu J, Wang Y, Tao Y, Zhang J, Liu J (2020) Streamflow forecasting using extreme gradient boosting model coupled with Gaussian mixture model. J Hydrol 586:124901. https://doi.org/10.1016/j.jhydrol.2020.124901

    Article  Google Scholar 

  280. Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting system. In: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery. pp 785–794. https://doi.org/10.1145/2939672.2939785.

  281. Fan J, Wu L, Zhang F, Cai H, Zeng W, Wang X, Zou H (2019) Empirical and machine learning models for predicting daily global solar radiation from sunshine duration: a review and case study in China. Renew Sustain Energy Rev 100:186–212. https://doi.org/10.1016/j.rser.2018.10.018

    Article  Google Scholar 

  282. Nguyen-Le DH, Tao QB, Nguyen VH, Abdel-Wahab M, Nguyen-Xuan H (2020) A data-driven approach based on long short-term memory and hidden Markov model for crack propagation prediction. Eng Fract Mech 235:107085. https://doi.org/10.1016/j.engfracmech.2020.107085

    Article  Google Scholar 

  283. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9:1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  284. Khanzadeh M, Chowdhury S, Tschopp MA, Doude HR, Marufuzzaman M, Bian L (2019) In-situ monitoring of melt pool images for porosity prediction in directed energy deposition processes. IISE Trans 51:437–455. https://doi.org/10.1080/24725854.2017.1417656

    Article  Google Scholar 

  285. Galeazzi D, Silva RHGe, Viviani AB, Jaeger PR, Schwedersky MB (2022) Evaluation of thermal and geometric properties of martensitic stainless steel thin walls built by additive manufacturing cold metal transfer (CMT) processes. Int J Adv Manuf Technol 120:2151–2165. https://doi.org/10.1007/S00170-022-08921-X

    Article  Google Scholar 

  286. Choi TM, Kumar S, Yue X, Chan HL (2022) Disruptive technologies and operations management in the industry 4.0 era and beyond. Prod Oper Manage 31:9–31. https://doi.org/10.1111/POMS.13622

    Article  Google Scholar 

  287. Sood SK, Rawat KS, Kumar D (2022) A visual review of artificial intelligence and Industry 4.0 in healthcare. Comput Electr Eng 101:107948. https://doi.org/10.1016/J.COMPELECENG.2022.107948

    Article  Google Scholar 

  288. Kumar N, Bhavsar H, Mahesh PVS, Srivastava AK, Bora BJ, Saxena A, Dixit AR (2022) Wire arc additive manufacturing—a revolutionary method in additive manufacturing. Mater Chem Phys 285:126144. https://doi.org/10.1016/J.MATCHEMPHYS.2022.126144

    Article  Google Scholar 

  289. Barrionuevo GO, Sequeira-Almeida PM, Ríos S, Ramos-Grez JA, Williams SW (2022) A machine learning approach for the prediction of melting efficiency in wire arc additive manufacturing. Int J Adv Manuf Technol 2022(120):3123–3133. https://doi.org/10.1007/S00170-022-08966-Y

    Article  Google Scholar 

  290. Li Y, Mu H, Polden J, Li H, Wang L, Xia C, Pan Z (2022) Towards intelligent monitoring system in wire arc additive manufacturing: a surface anomaly detector on a small dataset. Int J Adv Manuf Technol 2022(120):5225–5242. https://doi.org/10.1007/S00170-022-09076-5

    Article  Google Scholar 

  291. Zhou J, Wu X, Chen Y, Yang C, Yang R, Tan J, Liu Y, Qiu L, Cheng HM (2022) 3D printed template-directed assembly of multiscale graphene structures. Adv Funct Mater 32:2105879. https://doi.org/10.1002/ADFM.202105879

    Article  Google Scholar 

  292. Think big. Print nano. Your partner for high-precision additive manufacturing. Nanoscribe, (n.d.). https://www.nanoscribe.com/en/. Accessed 18 May 2022

  293. Korkmaz ME, Waqar S, Garcia-Collado A, Gupta MK, Krolczyk GM (2022) A technical overview of metallic parts in hybrid additive manufacturing industry. J Mater Res Technol 18:384–395. https://doi.org/10.1016/J.JMRT.2022.02.085

    Article  Google Scholar 

  294. Haleem A, Javaid M, Vaishya R (2019) 5D printing and its expected applications in orthopaedics. J Clin Orthop Trauma 10:809. https://doi.org/10.1016/J.JCOT.2018.11.014

    Article  Google Scholar 

  295. Gillaspie EA, Matsumoto JS, Morris NE, Downey RJ, Shen KR, Allen MS, Blackmon SH (2016) From 3-dimensional printing to 5-dimensional printing: enhancing thoracic surgical planning and resection of complex tumors. Ann Thorac Surg 101:1958–1962. https://doi.org/10.1016/J.ATHORACSUR.2015.12.075

    Article  Google Scholar 

  296. Yang Y, Li X, Chu M, Sun H, Jin J, Yu K, Wang Q, Zhou Q, Chen Y (2019) Electrically assisted 3D printing of nacre-inspired structures with self-sensing capability. Sci Adv. https://doi.org/10.1126/SCIADV.AAU9490

    Article  Google Scholar 

  297. Arif ZU, Khalid MY, Ahmed W, Arshad H (2022) A review on four-dimensional (4D) bioprinting in pursuit of advanced tissue engineering applications. Bioprinting 27:e00203. https://doi.org/10.1016/J.BPRINT.2022.E00203

    Article  Google Scholar 

  298. Three Areas Holding Back The $10.6B 3D Printing Industry, (n.d.). https://www.forbes.com/sites/michaelmolitch-hou/2022/04/25/three-areas-holding-back-the-106b-3d-printing-industry/?sh=7740ac474935. Accessed 18 May 2022

  299. Harris P, Laskowski B, Reutzel E, Earthman JC, Hess AJ (2018) Reliability centered additive manufacturing computational design framework. IEEE Aerosp Conf Proc. https://doi.org/10.1109/AERO.2018.8396824

    Article  Google Scholar 

  300. Liu Y, Guo L, Gao H, You Z, Ye Y, Zhang B (2022) Machine vision based condition monitoring and fault diagnosis of machine tools using information from machined surface texture: a review. Mech Syst Signal Process 164:108068. https://doi.org/10.1016/J.YMSSP.2021.108068

    Article  Google Scholar 

  301. Ahmad MA, Teredesai A, Eckert C (2018) Interpretable machine learning in healthcare. Proc 2018 Int Conf Healthc Inform ICHI. https://doi.org/10.1109/ICHI.2018.00095

    Article  Google Scholar 

  302. Sagi O, Rokach L (2020) Explainable decision forest: transforming a decision forest into an interpretable tree. Inf Fusion 61:124–138. https://doi.org/10.1016/J.INFFUS.2020.03.013

    Article  Google Scholar 

  303. Ekanayake IU, Meddage DPP, Rathnayake U (2022) A novel approach to explain the black-box nature of machine learning in compressive strength predictions of concrete using Shapley additive explanations (SHAP). Case Stud Constr Mater 16:e01059

    Google Scholar 

  304. Vora HB, Mirani HA, Bhatt V (2021) Traditional machine learning and no code machine learning with its features and application. Int J Trend Sci Res Dev 5:29–32

    Google Scholar 

  305. Prathumrat P, Nikzad M, Hajizadeh E, Arablouei R, Sbarski I (2022) Shape memory elastomers: a review of synthesis, design, advanced manufacturing, and emerging applications. Polym Adv Technol 33:1782–1808. https://doi.org/10.1002/PAT.5652

    Article  Google Scholar 

  306. Alejandrino JD, Concepcion RS, Lauguico SC, Tobias RR, Venancio L, Macasaet D, Bandala AA, Dadios EP (2020) A machine learning approach of lattice infill pattern for increasing material efficiency in additive manufacturing processes. Int J Mech Eng Robot Res 9:1253–1263. https://doi.org/10.18178/ijmerr.9.9.1253-1263

    Article  Google Scholar 

  307. Wei HL, Mukherjee T, Zhang W, Zuback JS, Knapp GL, De A, DebRoy T (2020) Mechanistic models for additive manufacturing of metallic components. Prog Mater Sci. https://doi.org/10.1016/j.pmatsci.2020.100703

    Article  Google Scholar 

  308. Wang Y, Müller W-D, Rumjahn A, Schwitalla A (2020) Parameters influencing the outcome of additive manufacturing of tiny medical devices based on PEEK. Materials (Basel) 13:466. https://doi.org/10.3390/ma13020466

    Article  Google Scholar 

  309. Dinc NU, Lim J, Kakkava E, Psaltis D, Moser C (2020) Computer generated optical volume elements by additive manufacturing. Nanophotonics 9:4173–4181. https://doi.org/10.1515/nanoph-2020-0196

    Article  Google Scholar 

  310. Majeed A, Zhang Y, Ren S, Lv J, Peng T, Waqar S, Yin E (2021) A big data-driven framework for sustainable and smart additive manufacturing. Robot Comput Integr Manuf 67:102026. https://doi.org/10.1016/j.rcim.2020.102026

    Article  Google Scholar 

  311. Paraskevoudis K, Karayannis P, Koumoulos EP (2020) Real-time 3D printing remote defect detection (stringing) with computer vision and artificial intelligence. Processes. https://doi.org/10.3390/pr8111464

    Article  Google Scholar 

  312. Fountas NA, Vaxevanidis NM (2021) Optimization of fused deposition modeling process using a virus-evolutionary genetic algorithm. Comput Ind 125:103371. https://doi.org/10.1016/j.compind.2020.103371

    Article  Google Scholar 

  313. Colosimo BM, Huang Q, Dasgupta T, Tsung F (2018) Opportunities and challenges of quality engineering for additive manufacturing. J Qual Technol 50:233–252. https://doi.org/10.1080/00224065.2018.1487726

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Safaei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkon, G.K., Safaei, B., Kenevisi, M.S. et al. State-of-the-Art Review of Machine Learning Applications in Additive Manufacturing; from Design to Manufacturing and Property Control. Arch Computat Methods Eng 29, 5663–5721 (2022). https://doi.org/10.1007/s11831-022-09786-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-022-09786-9

Navigation