Skip to main content
Log in

Characteristics of hemocompatible TiO2 nano-films produced by the sol-gel and anodic oxidation techniques

  • Multiscale Phenomena in Surfaces
  • Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Hemocompatible films can be obtained by different techniques which must produce a smooth surface and a desired combination of crystal structure including rutile and anatase structures. Two of the simplest techniques include sol-gel and anodic oxidation. The characteristics of the films associated with the process variables are presented. The most important characteristics of the films are thickness, structure, roughness, and mechanical properties such as adhesion and wear resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Thull, Biomdecuiar Engineering, 19(2–6) (2002), pp. 43–50.

    Article  CAS  Google Scholar 

  2. S. Hogmark, S. Jacobson, and M. Larsson, Wear, 246 (2000), pp. 20–33.

    Article  CAS  Google Scholar 

  3. M. Schallach, Electrotherapy of the Heart (Berlin: Springer-Verlag, 1993).

    Google Scholar 

  4. K. Holmberg, H. Ronkainen, and A. Matthews, Ceramics International, 26 (2000), pp. 787–795.

    Article  CAS  Google Scholar 

  5. O.N. Amerio et al., Revista Argentina de Cirugia Cardiovascular, 4 (2006), pp. 70–76.

    Google Scholar 

  6. M. Niinomi, Materials Science and Engineering A, 243 (1998), pp. 231–236.

    Article  Google Scholar 

  7. Y.X. Leng et al., Surface and Coatings Technology, 156 (2002), pp. 295–300.

    Article  CAS  Google Scholar 

  8. D. Velten et al., Journal of Biomedical Materials Research Part A, 59(1) (2001), pp, 18–28.

    Google Scholar 

  9. C.N. Elias et al., Journal of the Mechanical Behavior of Biomedical Materials, 1 (2008), pp. 234–242.

    Article  PubMed  Google Scholar 

  10. H.-J. Oh et al., Surface and Coatings Technology, 198 (2005), pp. 247–252.

    Article  CAS  Google Scholar 

  11. B.D. Ratner, Biomaterials, 28 (2007), pp. 5144–5147.

    Article  CAS  PubMed  Google Scholar 

  12. “Biological Evaluation of Medical Devices. Selection Of Test for Interactions of Blood, STANDARD IS010993-4 (Geneva, Switzerland: International Organization for Standardization, 2006).

  13. T. Hasebe et al., Diamond & Related Materials, 16 (2007), pp. 1343–1348.

    Article  CAS  Google Scholar 

  14. J.-X. Liu et al., Thin Solid Rims, 429 (2003), pp. 225–230.

    Article  CAS  ADS  Google Scholar 

  15. N. Huang et al., Journal of Biomaterials Applications, 8 (1994), pp. 404–412.

    Article  CAS  PubMed  Google Scholar 

  16. X. Wang et al., Surface and Coatings Technology 128–129 (2000), pp. 36–42.

    Article  Google Scholar 

  17. X. Liu, P.K. Chu, and C. Ding, Materials Science and Engineering R, 47 (2004), pp. 49–121.

    Article  Google Scholar 

  18. N. Huang et al, Biomaterials, 24 (2003), pp. 2177–2187.

    Article  CAS  PubMed  Google Scholar 

  19. I.A. Tsyganov et al. Nuclear Instruments and Methods in Physics Research B, 257 (2007), pp. 122–127.

    Article  CAS  Google Scholar 

  20. C.J. Brinker and A.J. Hurd, Journal of Physics III France, 4 (1994), pp. 1231–1242.

    Article  ADS  Google Scholar 

  21. M.A. Alterach et al, Anales de la Asociacíon Física Argentina, 20 (2008) pp. 147–153.

    Google Scholar 

  22. A. Aladjem, Journal of Materials Science, 8 (1973), pp. 688–704.

    Article  CAS  ADS  Google Scholar 

  23. M.V. Diamanti and M.R Pedeferri, Corrosion Science, 49 (2007), pp. 939–948.

    Article  CAS  Google Scholar 

  24. Z. Xia et al. Electrochemistry Communications, 9 (2007), pp. 850–856.

    Article  CAS  Google Scholar 

  25. M.V. Diamanti, M.P. Pedeferri, and C.A. Schuh, Metallurgical and Materials Transactions A, 39 (2008), pp. 2143–2147.

    Article  ADS  Google Scholar 

  26. Y-T Sul et al, Bkmateriais, 23 (2002), pp. 491–501.

    Article  CAS  Google Scholar 

  27. X. Cui et al. Dental Materials, 25 (2009), pp. 80–86.

    Article  CAS  PubMed  Google Scholar 

  28. K-H Kim and N. Ramaswamy, Dental Materials Journal, 28(1) (2009), pp. 20–36.

    Article  CAS  PubMed  Google Scholar 

  29. R. Rallombari et al. Solar Energy Materials & Solar Ceils, 71 (2002), pp. 359–368.

    Article  Google Scholar 

  30. M.L. Vera et al, Anales AFA 2009, in press.

  31. M.L. Vera et al. Supplemental Proceedings, Volume 2: Materials Characterization, Computation, Modeling and Energy (Warrendalle, PA: TMS, 2010), pp. 625–632.

    Google Scholar 

  32. M.L. Vera et al, SAM-COHAMET 2009: 9° Congreso Internacional de Metalurgia y Materiales (Buenos Aires, Argentina, 19–23 Octubre 2009, Actas edición) httpj/www..cnea.gov.ar/samconarnet2009/ .

    Google Scholar 

  33. S. Jacobsson et al. Scratch Testing, ASM Handbook 18 (Materials Park, OH: ASM International, 1997), pp. 820–837.

    Google Scholar 

  34. M.A. Alterach et al. Supplemental Proceedings: Volume 2: Materials Characterization, Computation, Modeling and Energy (Warrendale, PA: TMS, 2010), pp. 609–616.

    Google Scholar 

  35. W. Zhang et al. Ceramics International, 35 (2009), pp. 1513–1520.

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Enrique Schvezov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schvezov, C.E., Alterach, M.A., Vera, M.L. et al. Characteristics of hemocompatible TiO2 nano-films produced by the sol-gel and anodic oxidation techniques. JOM 62, 84–87 (2010). https://doi.org/10.1007/s11837-010-0094-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-010-0094-7

Keywords

Navigation