Skip to main content
Log in

Performance-driven design of Biocompatible Mg alloys

  • Corrosion in Biological Environments
  • Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Magnesium (Mg) and its alloys provide numerous benefits as a resorptive biomaterial and present the very real possibility of replacing current metallic implant materials in a variety of roles. The development of suitable biodegradable implant alloys is a multidisciplinary challenge, since alloy design must be confined to a range of alloying additions that are biologically nontoxic, whilst still providing the requisite mechanical properties. This leaves a small number of compatible elements that can provide benefits when alloyed with Mg, including calcium (Ca) and zinc (Zn). To date, although a range of different Mg alloys have been investigated both in vitro and in vivo, little work has been performed to characterize the relationship between the composition of Mg alloys, their corrosion and resulting mechanical properties over time. Consequently it is crucial to understand how these properties may be related if alloys are to be successfully screened for implantation in the body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.Y. Renkema, R.T. Alexander, R.J. Bindels, and J.G. Hoenderop, Annals of Internal Medicine, 40(2) (2008), pp. 82–91.

    CAS  Google Scholar 

  2. J.Z. Ilich and J.E. Kerstetter, J. American College of Nutrition, 19(6), (2000), pp. 715–737.

    CAS  Google Scholar 

  3. T. Hassel, F.W. Bach, A.N. Golovko, and A. Krause, editors, Magnesium Technology in the Global Age (Montreal, Quebec, Canada: CIM, 2006).

    Google Scholar 

  4. M.B. Kannan and R.K.S. Raman, Biomaterials, 29(15) (2008), pp. 2306–2314.

    Article  CAS  Google Scholar 

  5. W.-C. Kim, J.-G. Kim, J.-Y. Lee, and H.-K. Seok, Materials Letters, 62(25) (2008), pp. 4146–4148.

    Article  CAS  Google Scholar 

  6. A.M. Pietak, T. Mahoney, G. Dias, and M.P. Staiger, J. Biomedical Materials Research, 19(1) (2007), pp. 407–415.

    Google Scholar 

  7. N.T. Kirkland, J. Lespagnol, N. Birbilis, and M.P. Staiger, Corrosion Science, 52(2) (2010), pp. 287–291.

    Article  CAS  Google Scholar 

  8. X. Gu, Y. Zheng, Y. Cheng, S. Zhong, and T. Xi, Biomaterials, 30(4) (2009), pp. 484–498.

    Article  CAS  Google Scholar 

  9. S. Zhang et al., Acta Biomaterialia, 6(2) (2010), pp. 626–640.

    Article  CAS  Google Scholar 

  10. J. Li et al., Biomaterials, 31(22) (2010), pp. 5782–5788.

    Article  CAS  Google Scholar 

  11. Y. Chen, S. Zhang, J. Li, Y. Song, C. Zhao, and X. Zhang, Materials Letters, 64 (2010).

  12. G. Song, Corrosion Science, 49(4) (2007), pp. 1696–1701.

    Article  CAS  Google Scholar 

  13. X. Wang, H.M. Lu, X.L. Li, L. Li, and Y.F. Zhenh, Transactions of Nonferrous Metals Society of China, 17 (2007), pp. S122–S125.

    Article  CAS  Google Scholar 

  14. A. Das, G. Liu, and Z. Fan, Materials Science and Engineering: A, 419(1–2) (2006), pp. 349–356.

    Article  Google Scholar 

  15. S. Zhang et al., Materials Science and Engineering: C, 29(6) (2009), pp. 1907–1912.

    Article  CAS  Google Scholar 

  16. M. Bamberger, G. Levi, and J.B. Vander Sande, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 37(2) (2006), pp. 481–487.

    Article  Google Scholar 

  17. H.S. Brar and M.V. Manuel, Magnesium Technology 2010, ed. S.R. Agnew, N.R. Neelameggham, E.A. Nyberg, and W.H. Sillekens (Warrendale, PA: TMS, 2010), pp. 647–649.

    Google Scholar 

  18. R. Guan, T. Zhao, L.L. Wang, and T. Cui, Advanced Materials Research, 79(82) (2009), pp. 1443–1446.

    Article  Google Scholar 

  19. F. Rosalbino, S. De Negri, A. Saccone, E. Angelini, and S. Delfino, J. Materials Science: Materials in Medicine, 21(4) (2010), pp. 1091–1098.

    Article  CAS  Google Scholar 

  20. H.X. Wang, S.K. Guan, X. Wang, C.X. Ren, and L.G. Wang, Acta Biomaterialia, 6 (2010), pp. 1743–1748.

    Article  CAS  Google Scholar 

  21. B. Zberg, P.J. Uggowitzer, and J.F. Loffler, Nature Materials, 8(11) (2009), pp. 887–891.

    Article  CAS  Google Scholar 

  22. World Health Organisation, “Trace Elements in Human Nutrition and Health” (1996).

  23. S.G. Gilbert, A Small Dose of Toxicology: The Health Effects of Common Chemicals (Boca Raton, FL: CRC Press, 2004).

    Book  Google Scholar 

  24. B.V. Lentech, “Recommended Daily Intake of Vitamins and Minerals” (Lenntech BV Rotterdamseweg 402 M 2629 HH Delft The Netherlands), http://www.lenntech.com/recommended-daily-intake.htm (accessed 24 February 2011).

  25. H. Zhang, W.F. Zhu, and J. Feng, “Subchronic Toxicity of Rare Earth Elements and Estimated Daily Intake Allowance” (Presented at the Ninth Annual VM Goldschmidt Conference, Cambridge, MA, 1999).

  26. K. Merrit, S.A. Brown, and N.A. Sharkey, J. Biomedical Materials Research, 18 (1984), pp. 1005–1015.

    Article  Google Scholar 

  27. E.G.C. Clarke, Proceedings of the Royal Society of Medicine, 46(641) (1953), p. 17.

    Google Scholar 

  28. A. Yamamoto and S. Hiromoto, Materials Science and Engineering: C, 29(5) (2009), pp. 1559–1568.

    Article  CAS  Google Scholar 

  29. R. Rettig and S. Virtanen, J. Biomedical Materials Research Part A, 85A(1) (2008), pp. 167–175.

    Article  CAS  Google Scholar 

  30. M. Sugawara and N. Maeda, Hemorheology and Blood Flow (Tokyo: Corona Publishing Co., 2003).

    Google Scholar 

  31. C.D. Helgason and C.L. Miller, Basic Cell Culture Protocols, 3rd ed., Vol. 290 in Methods in Molecular Biology Series, series ed. J.M. Walker (Totowa, NJ: Humana Press, 2005).

    Google Scholar 

  32. H.E. Friedrich, in Magnesium Technology: Metallurgy, Design Data, Applications, ed. H.E. Friedrich and B.L. Mordike (Heidelberg, Germany: Springer, 2006).

    Google Scholar 

  33. R.C. Zeng, J. Chen, W. Dietzel, N. Hort, and K.U. Kainer, Transactions of Nonferrous Metals Society of China, 17 (2007), pp. S166–S170.

    Article  CAS  Google Scholar 

  34. N.T. Kirkland, N. Birbilis, J. Walker, T. Woodfi eld, G.J. Dias, and M.P. Staiger, J. Biomedical Materials Research Part B: Applied Biomaterials, 95B(1) (2010), pp. 91–100.

    Article  CAS  Google Scholar 

  35. N. Birbilis, M.K. Cavanaugh, A.D. Sudholz, S.M. Zhu, M.A. Easton, and M.A. Gibson, Corrosion Science, 53(1) (2011), pp. 168–176.

    Article  CAS  Google Scholar 

  36. M.K. Cavanaugh, R.G. Buchheit, and N. Birbilis, Corrosion Science, 52(9) (2010), pp. 3070–3077.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick Birbilis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirkland, N.T., Staiger, M.P., Nisbet, D. et al. Performance-driven design of Biocompatible Mg alloys. JOM 63, 28–34 (2011). https://doi.org/10.1007/s11837-011-0089-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-011-0089-z

Keywords

Navigation