Skip to main content
Log in

Nanoscale Plasticity at Grain Boundaries in Face-centered Cubic Copper Under Shock Loading

  • Published:
JOM Aims and scope Submit manuscript

Abstract

We investigate the responses of four representative grain boundaries in face-centered cubic Cu bicrystals to shock compression as a function of the loading direction. Two loading directions are considered, either parallel or perpendicular to the grain boundary plane, representing the extremes that a polycrystalline sample will ordinarily experience under the uniaxial strain conditions of planar shock loading. Using molecular dynamics simulations, we demonstrate that the deformation processes during shock compression of the same boundary are altered measurably by changing the loading direction. The Majority of the differences in the nanoscale deformation processes were related to the activation of varying slip systems in the same boundary under the two loading conditions. This change in deformation processes, and hence the plastic response, might eventually affect the failure stress for a grain boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. Curran, L. Seaman, and D. Shockey, Phys. Reports, 147(5–6), 253 (1987).

    Article  Google Scholar 

  2. L. Seaman, D.R. Curran, and D.A. Shockey, J. Appl. Phys., 47(11), 4814 (1976).

    Article  Google Scholar 

  3. M.A. Meyers and C.T. Aimone, Progr. Mater. Sci., 28(1), 1 (1983).

    Article  Google Scholar 

  4. D.R. Curran, L. Seaman, and D.A. Shockey, Phys. Today, 30(1), 45 (1977).

    Article  Google Scholar 

  5. R. Minich, J. Cazamias, M. Kumar, and A. Schwartz, Metall. Mater. Trans. A, 35A, 2663 (2004).

    Article  Google Scholar 

  6. R.W. Minich, M. Kumar, A. Schwatz, and J. Cazamias, AIP Conf. Proc., 845(1), 642 (2006).

    Article  Google Scholar 

  7. G.T. (Rusty) Gray, Ann. Rev. Mater. Res., 42(1), 285 (2012).

    Article  Google Scholar 

  8. A.A. Griffith, Phil. Trans. Royal Soc. Lond. Series A, 221(582–593), 163 (1921)

    Article  Google Scholar 

  9. G.R. Irwin, J. Appl. Mech., 24, 361 (1957).

    Google Scholar 

  10. J.P. Escobedo-Diaz, et al. in Effects of Microstructure and Loading Kinetics on the Dynamic Tensile Response of Copper, lA-UR 12-01257 (2012).

  11. J.P. Escobedo, D. Dennis-Koller, E.K. Cerreta, B.M. Patterson, C.A. Bronkhorst, B.L. Hansen, D. Tonks, and R.A. Lebensohn, J. Appl. Phys., 110(3), 033513 (2011).

    Article  Google Scholar 

  12. M.A. Meyers, L.E. Murr, and K.P. Staudhammer, in Shock Wave and High-Strain-Rate Phenomena in Materials, Dekker Mechanical Engineering Series. (Marcel Dekker, New York, NY, 1992)

    Google Scholar 

  13. L. Wayne, K. Krishnan, S. DiGiacomo, N. Kovvali, P. Peralta, S. Luo, S. Greenfield, D. Byler, D. Paisley, K. McClellan, A. Koskelo, and R. Dickerson, Scripta Mater., 63(11), 1065 (2010).

    Article  Google Scholar 

  14. S.J. Fensin, S.M. Valone, E.K. Cerreta, and G.T. Gray III, J. Appl. Phys., 112(8), 083529 (2012).

    Article  Google Scholar 

  15. B.L. Holian and P.S. Lomdahl, Science, 280(5372), 2085 (1998).

    Article  Google Scholar 

  16. T. Germann, B. Holian, P. Lomdahl, and R. Ravelo, Phys. Rev. Lett., 84(23), 5351 (2000).

    Article  Google Scholar 

  17. K. Kadau, T. Germann, P. Lomdahl, and B. Holian, Science, 296(5573), 1681 (2002).

    Article  Google Scholar 

  18. S.-N. Luo, T.C. Germann, D.L. Tonks, and Q. An, J. Appl. Phys., 108(9), 093526 (2010).

    Article  Google Scholar 

  19. Q. An, W.Z. Han, S.N. Luo, T.C. Germann, D.L. Tonks, and W.A. Goddard, J. Appl. Phys., 111(5), 053525 (2012).

    Article  Google Scholar 

  20. E.Q. Lin, H.J. Shi, L.S. Niu, and E.Z. Jin, Computat. Mater. Sci., 59, 94 (2012).

    Article  Google Scholar 

  21. V. Dremov, A. Petrovtsev, P. Sapozhnikov, M. Smirnova, D. Preston, and M. Zocher, Phys. Rev. B, 74(14), 144110 (2006).

    Article  Google Scholar 

  22. A.M. Dongare, A.M. Rajendran, B. LaMattina, M.A. Zikry, and D.W. Brenner, Phys. Rev. B, 80(10), 104108 (2009).

    Article  Google Scholar 

  23. S.-N. Luo, T.C. Germann, T.G. Desai, D.L. Tonks, and Q. An, J. Appl. Phys., 107(12), 123507 (2010).

    Article  Google Scholar 

  24. F. Yuan and X. Wu, Phys. Rev. B, 86(13), 134108 (2012).

    Article  Google Scholar 

  25. Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, and J.D. Kress, Phys. Rev. B, 63, 224106 (2001).

    Article  Google Scholar 

  26. E.M. Bringa, J.U. Cazamias, P. Erhart, J. Stolken, N. Tanushev, B.D. Wirth, R.E. Rudd, and M.J. Caturla, J. Appl. Phys., 96(7), 3793 (2004).

    Article  Google Scholar 

  27. R. Hoagland, M. Daw, and J. Hirth, J. Mater. Res., 6(12), 2565 (1991).

    Article  Google Scholar 

  28. S. Plimpton, J. Computat. Phys., 117(1), 1 (1995)

    Article  MATH  Google Scholar 

  29. A.P. Thompson, S.J. Plimpton, and W. Mattson, J. Chem. Phys., 131(15), 154107 (2009).

    Google Scholar 

  30. J.D. Honeycutt and H.C. Andersen, J. Phys. Chem., 91(19), 4950 (1987).

    Article  Google Scholar 

  31. K. Kang, J. Wang, and I.J. Beyerlein, J. Appl. Phys., 111(5), 053531 (2012).

    Article  Google Scholar 

  32. R. Pond and J. Hirth, in Defects at Surfaces and Interfaces, Vol. 47 of Solid State Physics, (Academic Press, New York, NY, 1994) pp. 287–365.

    Google Scholar 

  33. J. Hirth and R. Pond, Progr. Mater. Sci., 56(6), 586 (2011)

    Article  Google Scholar 

  34. J. Hirth, J. Lothe, in Theory of Dislocations. (Krieger Pub. Co., Malabar, FL, 1982).

    Google Scholar 

  35. Y. Zhu, X. Wu, X. Liao, J. Narayan, L. Kecsks, and S. Mathaudhu, Acta Mater., 59(2), 812 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

Los Alamos National Laboratory is operated by LANS, LLC, for the NNSA and the U.S Department of Energy under contract DE-AC52-06NA25396. This work was supported by the Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award number 2008LANL1026. The work of S.J.F. and E.K.C. was also supported by the DOD/DOE Joint Munitions Program. The authors would also like to thank Jian Wang for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Fensin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fensin, S.J., Brandl, C., Cerreta, E.K. et al. Nanoscale Plasticity at Grain Boundaries in Face-centered Cubic Copper Under Shock Loading. JOM 65, 410–418 (2013). https://doi.org/10.1007/s11837-012-0546-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-012-0546-3

Keywords

Navigation