Skip to main content
Log in

Deformation Mechanism Map of Cu/Nb Nanoscale Metallic Multilayers as a Function of Temperature and Layer Thickness

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The mechanical properties and deformation mechanisms of Cu/Nb nanoscale metallic multilayers (NMMs) manufactured by accumulative roll bonding are studied at 25°C and 400°C. Cu/Nb NMMs with individual layer thicknesses between 7 nm and 63 nm were tested by in situ micropillar compression inside a scanning electron microscope. Yield strength, strain-rate sensitivities and activation volumes were obtained from the pillar compression tests. The deformed micropillars were examined under scanning and transmission electron microscopy in order to examine the deformation mechanisms active for different layer thicknesses and temperatures. The analysis suggests that room temperature deformation was determined by dislocation glide at larger layer thicknesses and interface-related mechanisms at the thinner layer thicknesses. The high-temperature compression tests, in contrast, revealed superior thermo-mechanical stability and strength retention for the NMMs with larger layer thicknesses with deformation controlled by dislocation glide. A remarkable transition in deformation mechanism occurred as the layer thickness decreased, to a deformation response controlled by diffusion processes along the interfaces, which resulted in temperature-induced softening. A deformation mechanism map, in terms of layer thickness and temperature, is proposed from the results obtained in this investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Wang and A. Misra, Curr. Opin. Solid State Mater. Sci. 15, 20 (2011).

    Article  Google Scholar 

  2. A. Misra, J.P. Hirth, and R.G. Hoagland, Acta Mater. 53, 4817 (2005).

    Article  Google Scholar 

  3. N.A. Mara, D. Bhattacharyya, R.G. Hoagland, and A. Misra, Scr. Mater. 58, 874 (2008).

    Article  Google Scholar 

  4. K. Hattar, A. Misra, M.R.F. Dosanjh, P. Dickerson, I.M. Robertson, and R.G. Hoagland, J. Eng. Mater. Technol. 134, 21014 (2012).

    Article  Google Scholar 

  5. J.S. Carpenter, S.J. Zheng, R.F. Zhang, S.C. Vogel, I.J. Beyerlein, and N.A. Mara, Philos. Mag. 93, 718 (2013).

    Article  Google Scholar 

  6. S. Zheng, I.J. Beyerlein, J.S. Carpenter, K. Kang, J. Wang, W. Han, and N.A. Mara, Nat. Commun. 4, 1696 (2013).

    Article  Google Scholar 

  7. A. Misra, M.J. Demkowicz, X. Zhang, and R.G. Hoagland, JOM 59, 62 (2007).

    Article  Google Scholar 

  8. N.A. Mara, A. Misra, R.G. Hoagland, A.V. Sergueeva, T. Tamayo, P. Dickerson, and A.K. Mukherjee, Mater. Sci. Eng., A 493, 274 (2008).

    Article  Google Scholar 

  9. N.A. Mara, A. Sergueeva, A. Misra, and A.K. Mukherjee, Scr. Mater. 50, 803 (2004).

    Article  Google Scholar 

  10. N.A. Mara, T. Tamayo, A.V. Sergueeva, X. Zhang, A. Misra, and A.K. Mukherjee, Thin Solid Films 515, 3241 (2007).

    Article  Google Scholar 

  11. A. Misra, R.G. Hoagland, and H. Kung, Philos. Mag. 84, 1021 (2004).

    Article  Google Scholar 

  12. A. Misra and R.G. Hoagland, J. Mater. Res. 20, 2046 (2011).

    Article  Google Scholar 

  13. S.J. Zheng, J. Wang, J.S. Carpenter, W.M. Mook, P.O. Dickerson, N.A. Mara, and I.J. Beyerlein, Acta Mater. 79, 282 (2014).

    Article  Google Scholar 

  14. M.A. Monclús, S.J. Zheng, J.R. Mayeur, I.J. Beyerlein, N.A. Mara, T. Polcar, J. Llorca, and J.M. Molina-Aldareguía, APL Mater. 1, 52103 (2013).

    Article  Google Scholar 

  15. J.S. Carpenter, S.C. Vogel, J.E. LeDonne, D.L. Hammon, I.J. Beyerlein, and N.A. Mara, Acta Mater. 60, 1576 (2012).

    Article  Google Scholar 

  16. G. Mohanty, J.M. Wheeler, R. Raghavan, J. Wehrs, M. Hasegawa, S. Mischler, L. Philippe, and J. Michler, Philos. Mag. 95, 1878 (2014).

    Article  Google Scholar 

  17. I.N. Sneddon, Int. J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  18. S.J. Zheng, I.J. Beyerlein, J. Wang, J.S. Carpenter, W.Z. Han, and N.A. Mara, Acta Mater. 60, 5858 (2012).

    Article  Google Scholar 

  19. S. Lotfian, M. Rodríguez, K.E. Yazzie, N. Chawla, J. Llorca, and J.M. Molina-Aldareguía, Acta Mater. 61, 4439 (2013).

    Article  Google Scholar 

  20. R. Raghavan, J.M. Wheeler, D. Esqué-de los Ojos, K. Thomas, E. Almandoz, G.G. Fuentes, and J. Michler, Mater. Sci. Eng. A 620, 375 (2014).

    Article  Google Scholar 

  21. R. Raghavan, J.M. Wheeler, T.P. Harzer, V. Chawla, S. Djaziri, K. Thomas, B. Philippi, C. Kirchlechner, B.N. Jaya, J. Wehrs, J. Michler, and G. Dehm, Acta Mater. 100, 73 (2015).

    Article  Google Scholar 

  22. X.Y. Zhu, J.T. Luo, F. Zeng, and F. Pan, Thin Solid Films 520, 818 (2011).

    Article  Google Scholar 

  23. A. Misra and R.G. Hoagland, J. Mater. Sci. 42, 1765 (2007).

    Article  Google Scholar 

  24. Y.A. Chang and L. Himmel, J. Appl. Phys. 37, 3567 (1966).

    Article  Google Scholar 

  25. R.L. Coble, J. Appl. Phys. 34, 1679 (1963).

    Article  Google Scholar 

  26. O.A. Ruano, O.D. Sherby, J. Wadsworth, and J. Wolfenstine, Mater. Sci. Eng., A 211, 66 (1996).

    Article  Google Scholar 

  27. T. Surholt and C. Herzig, Acta Mater. 45, 3817 (1997).

    Article  Google Scholar 

  28. D.B. Butrymowicz, J.R. Manning, and M.E. Read, J. Phys. Chem. Ref. Data 2, 643 (1973).

    Article  Google Scholar 

  29. M.A. Meyers, A. Mishra, D.J. Benson, and A. Mishra, Prog. Mater Sci. 51, 427 (2006).

    Article  Google Scholar 

  30. Q. Wei, S. Cheng, K.T. Ramesh, and E. Ma, Mater. Sci. Eng., A 381, 71 (2004).

    Article  Google Scholar 

  31. M.E. Kassner and M.T. Pérez-Prado, Prog. Mater Sci. 45, 1 (2000).

    Article  Google Scholar 

  32. J. Wehrs, G. Mohanty, G. Guillonneau, A.A. Taylor, X. Maeder, D. Frey, L. Philippe, S. Mischler, J.M. Wheeler, and J. Michler, JOM 67, 1684 (2015).

    Article  Google Scholar 

  33. N. Li, J. Wang, J.Y. Huang, A. Misra, and X. Zhang, Scr. Mater. 63, 363 (2010).

    Article  Google Scholar 

  34. H.J. Frost and M.F. Ashby, Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Oxford: Pergamon Press, 1982).

    Google Scholar 

Download references

Acknowledgements

This investigation was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Advanced Grant VIRMETAL, Grant Agreement No. 669141). IJB acknowledges financial support from the National Science Foundation Designing Materials to Revolutionize and Engineer our Future (DMREF) program (NSF CMMI-1729887). Useful discussions during the course of this work from Prof. Sybrand van der Zwaag are gratefully acknowledged. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract DE-AC52-06NA25396.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Molina-Aldareguía.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snel, J., Monclús, M.A., Castillo-Rodríguez, M. et al. Deformation Mechanism Map of Cu/Nb Nanoscale Metallic Multilayers as a Function of Temperature and Layer Thickness. JOM 69, 2214–2226 (2017). https://doi.org/10.1007/s11837-017-2533-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2533-1

Navigation