Skip to main content

Advertisement

Log in

Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency

  • Recent Developments in the Processing of Magnetic Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Strong chemical reactions between Al and Ce lead to the formation of intermetallics with exceptional thermal stability. The rapid formation of intermetallics directly from the liquid phase during solidification of Al-Ce alloys leads to an ultrafine microconstituent structure that effectively strengthens as-cast alloys without further microstructural optimization via thermal processing. Die casting is a high-volume manufacturing technology that accounts for greater than 40% of all cast Al products, whereas Ce is highly overproduced as a waste product of other rare earth element (REE) mining. Reducing heat treatments would stimulate significant improvements in manufacturing energy efficiency, exceeding (megatonnes/year) per large-scale heat-treatment line. In this study, multiple compositions were evaluated with wedge mold castings to test the sensitivity of alloys to the variable solidification rate inherent in high-pressure die casting. Once a suitable composition was determined, it was successfully demonstrated at 800 lbs/h in a 600-ton die caster, after which the as-die cast parts performed similarly to ubiquitous A380 in the same geometry without requiring heat treatment. This work demonstrates the compatibility of Al REE alloys with high-volume die-casting applications with minimal heat treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ducker Worldwide, 2015 North American Light Vehicle Aluminum Content Study (2015).

  2. A.C. Street, The Diecasting Book (Redhill: Portcullis Press, 1977).

    Google Scholar 

  3. L. Wang, M. Makhlouf, and D. Apelian, Int. Mater. Rev. 40, 221 (1995).

    Article  Google Scholar 

  4. E.J. Vinarcik, High Integrity Die Casting Processes (New York: Wiley, 2002).

    Google Scholar 

  5. F. Bonollo, N. Gramegna, and G. Timelli, JOM 67, 901 (2015).

    Article  Google Scholar 

  6. A.R. Adamane, L. Arnberg, E. Fiorese, G. Timelli, and F. Bonollo, Int. J. Metalcast. 9, 43 (2015).

    Article  Google Scholar 

  7. D.L. Twarog, Cast. Eng. (2017).

  8. S. Ji, Y. Wang, D. Watson, and Z. Fan, Metall. Mater. Trans. A 44, 3185 (2013).

    Article  Google Scholar 

  9. S. Cecchel, G. Cornacchia, and A. Panvini, JOM 68, 2443 (2016).

    Article  Google Scholar 

  10. P. Hobson, Reuters (2017).

  11. Y. Fedorinova, Bloomberg (2015).

  12. J.E. Tilton, R.G. Eggert, and H.H. Landsberg, World mineral exploration: Trends and economic issues (New York: Routledge, 2015).

    Google Scholar 

  13. M. Boota, M.P. Paranthaman, A.K. Naskar, Y. Li, K. Akato, and Y. Gogotsi, Chemsuschem 8, 3576 (2015).

    Article  Google Scholar 

  14. Y. Li, G. Fu, M. Watson, S. Harrison, and M.P. Paranthaman, ChemNanoMat 2, 642 (2016).

    Article  Google Scholar 

  15. W.E. Tenhaeff, O. Rios, K. More, and M.A. McGuire, Adv. Funct. Mater. 24, 86 (2014).

    Article  Google Scholar 

  16. R.T. Nguyen and D.D. Imholte, JOM 68, 1948 (2016).

    Article  Google Scholar 

  17. P. Bakke, K. Pettersen, and H. Westengen, JOM 55, 46 (2003).

    Article  Google Scholar 

  18. F. Cecchinato, N.A. Agha, A.H. Martinez-Sanchez, B.J.C. Luthringer, F. Feyerabend, R. Jimbo, R. Willumeit-Römer, and A. Wennerberg, PLoS ONE 10, e0142117 (2015).

    Article  Google Scholar 

  19. Z.C. Sims, D. Weiss, S.K. McCall, M.A. McGuire, R.T. Ott, T. Geer, O. Rios, and P.E.A. Turchi, JOM 68, 1940 (2016).

    Article  Google Scholar 

  20. Z.C. Sims, O.R. Rios, D. Weiss, P.E.A. Turchi, A. Perron, J.R.I. Lee, T.T. Li, J.A. Hammons, M. Bagge-Hansen, T.M. Willey, K. An, Y. Chen, A.H. King, and S.K. McCall, Mater. Horiz. (2017).

  21. J.H. Perepezko and K. Hildal, Philos. Mag. 86, 3681 (2006).

    Article  Google Scholar 

  22. D. Liu, Y. Liu, Y. Huang, R. Song, and M. Chen, Prog. Nat. Sci. Mater. Int. 24, 452 (2014).

    Article  Google Scholar 

  23. G. Timelli and F. Bonollo, Mater. Sci. Eng. A 528, 273 (2010).

    Article  Google Scholar 

  24. J. Gröbner, D. Kevorkov, and R. Schmid-Fetzer, Intermetallics 10, 415 (2002).

    Article  Google Scholar 

  25. A.L. Kearney, in Prop. Sel. Nonferrous Alloys Spec.-Purp. Mater. (ASM International, Materials Park, 1990).

  26. J.-I. Cho and C.-W. Kim, Int. J. Met. 8, 49 (2014).

    Google Scholar 

  27. A. Plotkowski, O. Rios, N. Sridharan, Z. Sims, K. Unocic, R.T. Ott, R.R. Dehoff, and S.S. Babu, Acta Mater. 126, 507 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This research was sponsored by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, Eck Industries, and TTE Casting Technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orlando Rios.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 239 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stromme, E.T., Henderson, H.B., Sims, Z.C. et al. Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency. JOM 70, 866–871 (2018). https://doi.org/10.1007/s11837-018-2861-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2861-9

Navigation