Skip to main content
Log in

Discontinuous Precipitation in U-10 wt.%Mo Alloy: Reaction Kinetics, Effect of Prior γ-UMo Microstructure, the Role of Grain-Boundary Misorientation, and the Effect of Ternary Alloying Addition

  • Precipitation Mechanisms in Non-ferrous Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Discontinuous precipitation (DP) plays a major role during eutectoid transformation in U-10 wt.%Mo (U10Mo) alloy. DP results in the formation of a lamellar microstructure consisting of an α-U and Mo-enriched bcc γ-UMo phase along the prior γ-UMo grain boundaries. DP is the main mode of transformation at 500°C. However, continuous precipitation of γ′-U2Mo phase together with grain-boundary DP is observed at 400°C. The reaction kinetics are noted to be much slower at 400°C compared with 500°C. The degree of eutectoid transformation is related to the prior γ-UMo grain size, and a smaller average grain size leads to a larger amount of transformation at a given reaction temperature. Minor addition (0.2 wt.%) of a third alloying element (Cr, Ni, or Co) leads to substantial alterations in the nature of the DP mechanism in U10Mo alloy. In addition, high-angle grain boundaries with misorientation of 30°–45° are observed to be the major DP initiation sites. The microstructural evolution of U10Mo alloy regarding the DP-based reaction is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

(adapted from Ref. 7)

Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.L. Snelgrove, G.L. Hofman, M.K. Meyer, C.L. Trybus, and T.C. Wiencek, Nucl. Eng. Des. 178, 119 (1997).

    Article  Google Scholar 

  2. D.E. Burkes, R. Prabhakaran, T. Hartmann, J.-F. Jue, and F.J. Rice, Nucl. Eng. Des. 240, 1332 (2010).

    Article  Google Scholar 

  3. R.W. Cahn, P. Haasen, E.J. Kramer, and B.R.T. Frost, Materials Science and Technology: A Comprehensive Treatment. Nuclear Materials VCH19941994.

  4. M.K. Meyer, J. Gan, J.F. Jue, D.D. Keiser, E. Perez, A. Robinson, D.M. Wachs, N. Woolstenhulme, G.L. Hofman, and Y.S. Kim, Nucl. Eng. Technol. 46, 169 (2014).

    Article  Google Scholar 

  5. A. Berche, N. Dupin, C. Guéneau, C. Rado, B. Sundman, and J.C. Dumas, J. Nucl. Mater. 411, 131 (2011).

    Article  Google Scholar 

  6. A.E. Dwight, J. Nucl. Mater. 2, 81 (1960).

    Article  Google Scholar 

  7. S. Jana, A. Devaraj, L. Kovarik, B. Arey, L. Sweet, T. Varga, C. Lavender, and V. Joshi, J. Alloys Compd. 723, 757 (2017).

    Article  Google Scholar 

  8. A. Devaraj, E. Kautz, L. Kovarik, S. Jana, N. Overman, C. Lavender, and V.V. Joshi, Scr. Mater. 156, 70 (2018).

    Article  Google Scholar 

  9. V.V. Joshi, E.A. Nyberg, C.A. Lavender, D. Paxton, and D.E. Burkes, J. Nucl. Mater. 465, 710 (2015).

    Article  Google Scholar 

  10. V.V. Joshi, E.A. Nyberg, C.A. Lavender, D. Paxton, H. Garmestani, and D.E. Burkes, J. Nucl. Mater. 465, 805 (2015).

    Article  Google Scholar 

  11. J.F. Jue, B.H. Park, C.R. Clark, G.A. Moore, and D.D. Keiser, Nucl. Technol. 172, 204 (2010).

    Article  Google Scholar 

  12. A. Devaraj, L. Kovarik, E. Kautz, B. Arey, S. Jana, C. Lavender, and V. Joshi, Acta Mater. 151, 181 (2018).

    Article  Google Scholar 

  13. P.E. Repas, R.H. Goodenow, and R.F. Hehemann, Trans. Am. Soc. Met. 57, 150 (1964).

    Google Scholar 

  14. S. Neogy, M.T. Saify, S.K. Jha, D. Srivastava, and G.K. Dey, Philos. Mag. 95, 2866 (2015).

    Article  Google Scholar 

  15. V.P. Sinha, P.V. Hegde, G.J. Prasad, G.K. Dey, and H.S. Kamath, J. Alloys Compd. 506, 253 (2010).

    Article  Google Scholar 

  16. M.A. Steiner, C.A. Calhoun, R.W. Klein, K. An, E. Garlea, and S.R. Agnew, J. Nucl. Mater. 477, 149 (2016).

    Article  Google Scholar 

  17. S. Saubert, R. Jungwirth, T. Zweifel, M. Hofmann, M. Hoelzel, and W. Petry, J. Appl. Crystallogr. 49, 923 (2016).

    Article  Google Scholar 

  18. S. Jana, N. Overman, T. Varga, C. Lavender, and V.V. Joshi, J. Nucl. Mater. 496, 215 (2017).

    Article  Google Scholar 

  19. S. Neogy, M.T. Saify, S.K. Jha, D. Srivastava, M.M. Hussain, G.K. Dey, and R.P. Singh, J. Nucl. Mater. 422, 77 (2012).

    Article  Google Scholar 

  20. J.-S. Lee, C.-H. Lee, K.H. Kim, and V. Em, J. Nucl. Mater. 306, 147 (2002).

    Article  Google Scholar 

  21. N.R. Overman, S. Jana, D.P. Field, C. Lavender, and V.V. Joshi, An EBSD Analysis of Grain Boundary Initiated Discontinuous Precipitation in U10Mo Pacific Northwest National Laboratory (2019).

  22. S. Jana, L. Sweet, D. Neal, A. Schemer-Kohrn, C. Lavender, and V. Joshi, J. Nucl. Mater. 509, 318 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this work was provided by the U.S. Department of Energy National Nuclear Security Administration’s Office of Material Management and Minimization, and it was performed at Pacific Northwest National Laboratory under Contract DE-AC05-76RL01830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saumyadeep Jana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jana, S., Overman, N., Devaraj, A. et al. Discontinuous Precipitation in U-10 wt.%Mo Alloy: Reaction Kinetics, Effect of Prior γ-UMo Microstructure, the Role of Grain-Boundary Misorientation, and the Effect of Ternary Alloying Addition. JOM 71, 2770–2779 (2019). https://doi.org/10.1007/s11837-019-03588-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03588-4

Navigation