Skip to main content
Log in

Pulsed Laser Deposition Films Based on CdSe-Doped Zinc Aluminophosphate Glass

  • Advanced Coating and Thin Film Materials for Energy, Aerospace and Biological Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A composite material with applications in optoelectronics has been investigated. Pulsed laser deposition CdSe-doped glass film was prepared by the combinatorial deposition from two targets, namely pure CdSe and glass belonging to the 20Li2O-10Al2O3-7BaO-2La2O3-2ZnO-59P2O5 system. Exciton peaks in the Vis domain, related to electron–hole pairs transitions from the valence band to the conduction band, were revealed in the optical absorption spectra of the CdSe-doped film. CdSe quantum dots (QDs) band gap energy depends on the CdSe quantum confinement effect. CdSe-doped film photoluminescence exhibits peaks in the red domain assigned to CdSe transitions from the excited state to the ground state. The size of CdSe nanoclusters, determined from x-ray diffraction is correlated with scanning electron microscopy–energy dispersive x-ray spectroscopy and atomic force microscopy results. Vibration modes specific both to CdSe QDs and to the vitreous network have been evidenced by Fourier transform infrared and Raman spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Salem, E. Saion, N.M. Al-Hada, H.M. Kamari, A.H. Shaari, C.A.C. Abdullah, and S. Radiman, Results Phys. (2017). https://doi.org/10.1016/j.rinp.2017.04.026.

    Article  Google Scholar 

  2. S. Dayal, N. Kopidakis, D.C. Olson, D.S. Ginley, and G. Rumbles, Nano Lett. (2010). https://doi.org/10.1021/nl903406s.

    Article  Google Scholar 

  3. S. Bera, S.B. Singh, and S.K. Ray, J. Solid State Chem. (2012). https://doi.org/10.1016/j.jssc.2011.11.048.

    Article  Google Scholar 

  4. X. Wang, H. Liu, and W. Shen, Nanotechnology (2016). https://doi.org/10.1088/0957-4484/27/8/085605.

    Article  Google Scholar 

  5. P.A. Chate, P.P. Hankare, and D.J. Sathe, J. Alloys Compd. (2010). https://doi.org/10.1016/j.jallcom.2010.06.015.

    Article  Google Scholar 

  6. S.K. Shinde, G.S. Ghodake, D.P. Dubal, G.M. Lohar, D.S. Lee, and V.J. Fulari, Ceram. Int. (2014). https://doi.org/10.1016/j.ceramint.2014.03.063.

    Article  Google Scholar 

  7. F.E. Kruis, H. Fissan, and A. Peled, J. Aerosol Sci. (1998). https://doi.org/10.1016/S0021-8502(97)10032-5.

    Article  Google Scholar 

  8. D. Pugh-Thomas, B.M. Walsh, and M.C. Gupta, Nanotechnology (2011). https://doi.org/10.1088/0957-4484/22/18/185503.

    Article  Google Scholar 

  9. G. Zou and H. Ju, Anal. Chem. (2004). https://doi.org/10.1021/ac049012j.

    Article  Google Scholar 

  10. M.G. Sandros, D. Gao, and D.E. Benson, J. Am. Chem. Soc. (2005). https://doi.org/10.1021/ja054166h.

    Article  Google Scholar 

  11. I.-F. Li and C.-S. Yeh, J. Mater. Chem. (2010). https://doi.org/10.1039/B924089F.

    Article  Google Scholar 

  12. I. Lokteva, N. Radychev, F. Witt, H. Borchert, J. Parisi, and J. Kolny-Olesiak, J. Phys. Chem. C (2010). https://doi.org/10.1021/jp103300v.

    Article  Google Scholar 

  13. S.K. Saha, A. Guchhait, and A.J. Pal, J. Appl. Phys. (2012). https://doi.org/10.1063/1.4747835.

    Article  Google Scholar 

  14. S. Mahato and A.K. Kar, J. Sci. Adv. Mater. Devices (2017). https://doi.org/10.1016/j.jsamd.2017.04.001.

    Article  Google Scholar 

  15. H. Etxeberria, I. Zalakain, A. Tercjak, A. Eceiza, G. Kortaberria, and I. Mondragon, J. Nanosci. Nanotechnol. (2013). https://doi.org/10.1166/jnn.2013.6858.

    Article  Google Scholar 

  16. H. Etxeberria, I. Zalakain, I. Mondragon, A. Eceiza, and G. Kortaberria, Colloid Polym. Sci. (2013). https://doi.org/10.1007/s00396-013-2927-8.

    Article  Google Scholar 

  17. H. Etxeberria, G. Kortaberria, I. Zalakain, A. Larrañaga, and I. Mondragon, J. Mater. Sci. (2012). https://doi.org/10.1007/s10853-012-6659-9.

    Article  Google Scholar 

  18. M.L. Landry, T.E. Morrell, T.K. Karagounis, C.-H. Hsia, and C.-Y. Wang, J. Chem. Educ. (2014). https://doi.org/10.1021/ed300568e.

    Article  Google Scholar 

  19. A. Salem, E. Saion, N.M. Al-Hada, A.H. Shaari, H.M. Kamari, N. Soltani, and S. Radiman, Appl. Sci. (2016). https://doi.org/10.3390/app6100278.

    Article  Google Scholar 

  20. B. Suo, X. Su, J. Wu, D. Chen, A. Wang, and Z. Guo, Mater. Chem. Phys. (2010). https://doi.org/10.1016/j.matchemphys.2009.08.054.

    Article  Google Scholar 

  21. W.-B. Zhao, J.-J. Zhu, and H.-Y. Chen, J. Cryst. Growth (2003). https://doi.org/10.1016/S0022-0248(03)00865-0.

    Article  Google Scholar 

  22. M.A. Malik, N. Revaprasadu, and P. O’Brien, Chem. Mater. (2001). https://doi.org/10.1021/cm0011662.

    Article  Google Scholar 

  23. Q. Yang, K. Tang, F. Wang, C. Wang, and Y. Qian, Mater. Lett. (2003). https://doi.org/10.1016/S0167-577X(03)00117-4.

    Article  Google Scholar 

  24. N.M. Al-Hada, E.B. Saion, A.H. Shaari, M.A. Kamarudeen, M.H. Flaifel, and S.A. Gene, Adv. Mater. Res. (2015). https://doi.org/10.4028/www.scientific.net/AMR.1107.291.

    Article  Google Scholar 

  25. P.J. Lee, E. Saion, N.M. Al-Hada, and N.A. Soltani, Metals (2015). https://doi.org/10.3390/met5042383.

    Article  Google Scholar 

  26. L.B. Zakiyah, E. Saion, N.M. Al-Hada, E. Gharibshahi, A. Salem, N. Soltani, and S. Gene, Mater. Sci. Semicond. Process. (2015). https://doi.org/10.1016/j.mssp.2015.07.027.

    Article  Google Scholar 

  27. A.A. Baqer, K.A. Matori, N.M. Al-Hada, A.H. Shaari, E. Saion, and J.L.Y. Chyi, Results Phys. (2017). https://doi.org/10.1016/j.rinp.2017.01.020.

    Article  Google Scholar 

  28. M. Hashem, E. Saion, N.M. Al-Hada, H.M. Kamari, A.H. Shaari, Z.A. Talib, S.B. Paiman, and M.A. Kamarudeen, Results Phys. (2016). https://doi.org/10.1016/j.rinp.2016.11.031.

    Article  Google Scholar 

  29. A. Salem, E. Saion, N.M. Al-Hada, H.M. Kamari, A.H. Shaari, and S. Radiman, Results Phys. (2017). https://doi.org/10.1016/j.rinp.2017.03.011.

    Article  Google Scholar 

  30. S.A. Gene, E.B. Saion, A.H. Shaari, M.A. Kamarudeen, and N.M. Al-Hada, Adv. Mater. Res. (2015). https://doi.org/10.4028/www.scientific.net/AMR.1107.301.

    Article  Google Scholar 

  31. A. Purohit, S. Chander, S.P. Nehra, C. Lal, and M.S. Dhaka, Opt. Mater. (2015). https://doi.org/10.1016/j.optmat.2015.05.053.

    Article  Google Scholar 

  32. A.A. Yadav, M.A. Barote, and E.U. Masumdar, Mater. Chem. Phys. (2010). https://doi.org/10.1016/j.matchemphys.2009.12.039.

    Article  Google Scholar 

  33. S. Devadason and M.R. Muhamad, Phys. B (2007). https://doi.org/10.1016/j.physb.2006.12.073.

    Article  Google Scholar 

  34. I.A. Kariper, J. Non-Oxide Glass. 8, 1 (2016).

    Google Scholar 

  35. I.A. Kariper, O. Baglayan, and F. Gode, Acta Phys. Pol. A (2015). https://doi.org/10.12693/aphyspola.128.b-219.

    Article  Google Scholar 

  36. K.H. Sadekar, A.V. Ghule, and R. Sharma, IJIET 5, 35 (2015).

    Google Scholar 

  37. P.P. Hankare, P.A. Chate, D.J. Sathe, M.R. Asabe, and B.V. Jadhav, J. Alloys Compd. (2009). https://doi.org/10.1016/j.jallcom.2008.06.081.

    Article  Google Scholar 

  38. L.K. Teh, V. Furin, A. Martucci, M. Guglielmi, C.C. Wong, and F. Romanato, Thin Solid Films (2007). https://doi.org/10.1016/j.tsf.2006.12.166.

    Article  Google Scholar 

  39. Y.G. Gudage and R. Sharma, Curr. Appl. Phys. (2010). https://doi.org/10.1016/j.cap.2009.12.043.

    Article  Google Scholar 

  40. S. Mahato, N. Shakti, and A.K. Kar, Mater. Sci. Semicond. Process. (2015). https://doi.org/10.1016/j.mssp.2015.06.019.

    Article  Google Scholar 

  41. Z. Gao, W. Jin, Y. Li, Q. Song, Y. Wang, K. Zhang, S. Wang, and L. Dai, J. Mater. Chem. C (2015). https://doi.org/10.1039/C5TC00090D.

    Article  Google Scholar 

  42. X. Wang, W. Tian, M. Liao, Y. Bando, and D. Golberg, Chem. Soc. Rev. (2014). https://doi.org/10.1039/c3cs60348b.

    Article  Google Scholar 

  43. S.N. Sarangi and S.N. Sahu, Phys. E (2004). https://doi.org/10.1016/j.physe.2004.02.001.

    Article  Google Scholar 

  44. S. Chaure, N.B. Chaure, and R.K. Pandey, Phys. E (2005). https://doi.org/10.1016/j.physe.2005.05.044.

    Article  Google Scholar 

  45. S.R. Vishwakarma, A. Kumar, S. Prasad, and R.S.N. Tripathi, Chalcogenide Lett. 10, 393 (2013).

    Google Scholar 

  46. M. Hyugaji and T. Miura, Jpn. J. Appl. Phys. 1 (1985). https://doi.org/10.1143/JJAP.24.1575.

    Article  Google Scholar 

  47. G. Perna, V. Capozzi, and M. Ambrico, J. Appl. Phys. (1998). https://doi.org/10.1063/1.367102.

    Article  Google Scholar 

  48. K.B. Chaudhari, N.M. Gosavi, N.G. Deshpande, and S.R. Gosavi, J. Sci. Adv. Mater. Devices (2016). https://doi.org/10.1016/j.jsamd.2016.11.001.

    Article  Google Scholar 

  49. M.A. Yıldırım, Y. Akaltun, and A. Ates, Solid State Sci. (2012). https://doi.org/10.1016/j.solidstatesciences.2012.07.012.

    Article  Google Scholar 

  50. B. Li, J. Liu, G. Xu, R. Lu, L. Feng, and J. Wu, Appl. Phys. Lett. (2012). https://doi.org/10.1063/1.4759116.

    Article  Google Scholar 

  51. Z. Bao, X. Yang, B. Li, R. Luo, B. Liu, P. Tang, J. Zhang, L. Wu, W. Li, and L. Feng, J. Mater. Sci. Mater. Electron. (2016). https://doi.org/10.1007/s10854-016-4689-9.

    Article  Google Scholar 

  52. M. Elisa, C.R. Iordanescu, I.C. Vasiliu, I.D. Feraru, G. Epurescu, M. Filipescu, C. Plapcianu, C. Bartha, R. Trusca, and S. Peretz, J. Mater. Sci. (2017). https://doi.org/10.1007/s10853-016-0583-3.

    Article  Google Scholar 

  53. C.R. Iordanescu, M. Elisa, G. Epurescu, M. Filipescu, M. Enculescu, R.C.C. Monteiro, and L. Constantin, Rom. J. Mater. 47, 60 (2017).

    Google Scholar 

  54. C.R. Iordanescu, I.D. Feraru, M. Elisa, I.C. Vasiliu, A. Volceanov, S. Stoleriu, and M. Filipescu, J. Optoelectron. Adv. Mater. 16, 288 (2014).

    Google Scholar 

  55. I. Feraru, R. Iordanescu, M. Elisa, C. Vasiliu, A. Volceanov, S. Stoleriu, A. Peretz, and M. Filipescu, Chalcogenide Lett. 10, 509 (2013).

    Google Scholar 

  56. C. Vasiliu, G. Epurescu, H. Niciu, O. Dumitrescu, C. Negrilă, M. Elişa, M. Filipescu, M. Dinescu, and C.E.A. Grigorescu, J. Mater. Sci. Mater. Electron. (2009). https://doi.org/10.1007/s10854-008-9583-7.

    Article  Google Scholar 

  57. G. Epurescu, A. Vlad, M.A. Bodea, C. Vasiliu, O. Dumitrescu, H. Niciu, M. Elişa, K. Siraj, J.D. Pedarnig, D. Bäuerle, M. Filipescu, A. Nedelcea, A.C. Gâlcă, C.E.A. Grigorescu, and M. Dinescu, Appl. Surf. Sci. (2009). https://doi.org/10.1016/j.apsusc.2008.10.038.

    Article  Google Scholar 

  58. M. Valeanu, M. Sofronie, A.C. Galca, F. Tolea, M. Elisa, B. Sava, L. Boroica, and V. Kuncser, J. Phys. D Appl. Phys. (2016). https://doi.org/10.1088/0022-3727/49/7/075001.

    Article  Google Scholar 

  59. G. Lakshminarayana, K.M. Kaky, S.O. Baki, A. Lira, P. Nayar, I.V. Kityk, and M.A. Mahdi, J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2016.08.180.

    Article  Google Scholar 

  60. B.O. Dabbousi, J. Rodriguez-Viejo, F.V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, and M.G. Bawendi, J. Phys. Chem. B (1997). https://doi.org/10.1021/jp971091y.

    Article  Google Scholar 

  61. H.Q. Nguyen, Adv. Nat. Sci. Nanosci. Nanotechnol. (2010). https://doi.org/10.1088/2043-6254/1/2/025004.

    Article  Google Scholar 

  62. A.I. Ekimov, F. Hache, M.C. Schanne-Klein, D. Ricard, C. Flytzanis, I.A. Kudryavtsev, T.V. Yazeva, A.V. Rodina, and A.L. Efros, J. Opt. Soc. Am. B (1993). https://doi.org/10.1364/josab.10.000100.

    Article  Google Scholar 

  63. U. Woggon, O. Wind, F. Gindele, E. Tsitsishvili, and M. Muller, J. Lumin. (1996). https://doi.org/10.1016/0022-2313(96)00060-9.

    Article  Google Scholar 

  64. W.-C. Kwak, T.G. Kim, W.-S. Chae, and Y.-M. Sung, Nanotechnology (2007). https://doi.org/10.1088/0957-4484/18/20/205702.

    Article  Google Scholar 

  65. C. Mehta, J.M. Abbas, G.S.S. Saini, and S.K. Tripathi, Chalcogenide Lett. 4, 133 (2007).

    Google Scholar 

  66. G. Wang, J. Lei, H. Yun, L. Guo, and B. Jin, Submol. Glass Chem. Phys. Proc. SPIE (1991). https://doi.org/10.1117/12.50216.

    Article  Google Scholar 

  67. S.V. Stefanovskii, I.A. Ivanov, and A.N. Gulin, Glass Phys. Chem. 20, 103 (1994).

    Google Scholar 

  68. G. Le Saout, P. Simon, F. Fayon, A. Blin, and Y. Vaills, J. Raman Spectrosc. (2002). https://doi.org/10.1002/jrs.911.

    Article  Google Scholar 

  69. D. Muresan, M. Dragan Bularda, C. Popa, L. Baia, and S. Simion, Rom. J. Phys. 51, 231 (2006).

    Google Scholar 

  70. M. Elisa, B.A. Sava, I.C. Vasiliu, R.C.C. Monteiro, C.R. Iordanescu, I.D. Feraru, L. Ghervase, C. Tanaselia, M. Senila, B. Abraham, and I.O.P. Conf, Ser. Mater. Sci. Eng. (2013). https://doi.org/10.1088/1757-899X/47/1/012025.

    Article  Google Scholar 

  71. M. Elisa, B.A. Sava, I.C. Vasiliu, R.C.C. Monteiro, J.P. Veiga, L. Ghervase, I. Feraru, and R. Iordanescu, J. Non-Cryst. Solids (2013). https://doi.org/10.1016/j.jnoncrysol.2013.03.024.

    Article  Google Scholar 

  72. V.M. Dzhagan, M.Y. Valakh, A.E. Raevskaya, A.L. Stroyuk, S.Y. Kuchmiy, and D.R.T. Zahn, Nanotechnology (2008). https://doi.org/10.1088/0957-4484/19/30/305707.

    Article  Google Scholar 

  73. L. Baia, D. Muresan, M. Baia, J. Popp, and S. Simon, Vib. Spectrosc. (2007). https://doi.org/10.1016/j.vibspec.2006.03.006.

    Article  Google Scholar 

  74. D. Muresan, M. Vasilescu, I. Balasz, C. Popa, W. Kiefer, and S. Simon, J. Optoelectron. Adv. Mater. 8, 558 (2006).

    Google Scholar 

  75. P.K. Jha, O.P. Pandey, and K. Singh, J. Mol. Struct. (2015). https://doi.org/10.1016/j.molstruc.2014.11.027.

    Article  Google Scholar 

  76. J.J. Hudgens, R.K. Brow, D.R. Tallant, and S.W. Martin, J. Non-Cryst. Solids (1998). https://doi.org/10.1016/S0022-3093(97)00347-5.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding from the Ministry of Research and Innovation through Program I- Development of the National Research and Development System, Subprogram 1.2 - Institutional Performance-Projects for Excellence Financing in RDI, Contract No.19PFE/17.10.2018, and contracts 47PCCDI/2018, 42PCCDI/2018, PN 16N/2019, PN 18N/2019, and PN 21N/2019.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stefan-Marian Iordache or Madalin Ion Rusu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elisa, M., Iordache, SM., Iordache, AM. et al. Pulsed Laser Deposition Films Based on CdSe-Doped Zinc Aluminophosphate Glass. JOM 73, 495–503 (2021). https://doi.org/10.1007/s11837-020-04150-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04150-3

Navigation