Skip to main content
Log in

Uncertainty Quantification of Machine Learning Predicted Creep Property of Alumina-Forming Austenitic Alloys

  • Augmenting Physics-based Models in ICME with Machine Learning and Uncertainty Quantification
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The development of machine learning (ML) approaches in materials science offers the opportunity to exploit existing engineering and developmental alloy datasets, such as Oak Ridge National Laboratory (ORNL)’s consistently measured creep-rupture dataset for alumina-forming austenitic (AFA) alloys, to accelerate their further development. As a first step toward achieving ML insights for improved alloy design, the potential sources of uncertainty and their impacts on ML output are examined. It is observed that the selection of algorithms and features as well as data sampling significantly affects the performance of ML models, either positively or negatively. The performance of various ML models in predicting the creep properties of AFA alloys is compared, with further evaluation by assessment of a small set of new developmental AFA alloys that were not part of the training dataset. The present study demonstrates that uncertainty quantification (UQ) is essential in materials science for evaluating the performance of ML algorithms with specifically selected feature sets and obtaining a comprehensive understanding of their limitations and the resultant capability of effective prediction in complex materials systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Yamamoto, M.P. Brady, Z.P. Lu, P.J. Maziasz, C.T. Liu, B.A. Pint, K.L. More, H. Meyer, and E.A. Payzant, Science 316, 433 (2007).

    Article  Google Scholar 

  2. M.P. Brady, Y. Yamamoto, M.L. Santella, P.J. Maziasz, B.A. Pint, C. Liu, Z. Lu, and H. Bei, JOM 60, 12 (2008).

    Article  Google Scholar 

  3. Y. Yamamoto, M.L. Santella, M.P. Brady, H. Bei, and P.J. Maziasz, Metall. Mater. Trans. A 40, 1868 (2009).

    Article  Google Scholar 

  4. M.P. Brady, K.A. Unocic, M.J. Lance, M.L. Santella, Y. Yamamoto, and L.R. Walker, Oxid. Met. 75, 337 (2011).

    Article  Google Scholar 

  5. Y. Yamamoto, M.P. Brady, M.L. Santella, H. Bei, P.J. Maziasz, and B.A. Pint, Metall. Mater. Trans. A 42, 922 (2011).

    Article  Google Scholar 

  6. M.P. Brady, J. Magee, Y. Yamamoto, D. Helmick, and L. Wang, Mater. Sci. Eng. A 590, 101 (2014).

    Article  Google Scholar 

  7. B.A. Pint, S. Dryepondt, M.P. Brady, Y. Yamamoto, B. Ruan, and R.D. McKeirnan, J. Eng. Gas Turbines Power 138, 122001 (2016).

    Article  Google Scholar 

  8. D. Shin, Y. Yamamoto, M.P. Brady, S. Lee, and J.A. Haynes, Acta Mater. 168, 321 (2019).

    Article  Google Scholar 

  9. F.E. Bock, R.C. Aydin, C.J. Cyron, N. Huber, S.R. Kalidindi, and B. Klusemann, Front. Mater. 6, 110 (2019).

    Article  Google Scholar 

  10. J. Schmidt, M.R. Marques, S. Botti, and M.A. Marques, npj Comput. Mater. 5, 1 (2019).

    Article  Google Scholar 

  11. R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, and C. Kim, npj Comput. Mater. 3, 54 (2017).

    Article  Google Scholar 

  12. S. Ramakrishna, T.-Y. Zhang, W.-C. Lu, Q. Qian, J.S.C. Low, J.H.R. Yune, D.Z.L. Tan, S. Bressan, S. Sanvito, and S.R. Kalidindi, J. Intell. Manuf. 30, 2307 (2019).

    Article  Google Scholar 

  13. K. Alberi, M.B. Nardelli, A. Zakutayev, L. Mitas, S. Curtarolo, A. Jain, M. Fornari, N. Marzari, I. Takeuchi, and M.L. Green, J. Phys. D Appl. Phys. 52, 013001 (2018).

    Article  Google Scholar 

  14. K. Rajan, Mater. Today 8, 38 (2005).

    Article  Google Scholar 

  15. G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to statistical learning (New York: Springer, 2013).

    Book  Google Scholar 

  16. https://www.thermocalc.com/media/10306/tcfe9_extended_info.pdf. Accessed 2020.

  17. J.-O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman, Calphad 26, 273 (2002).

    Article  Google Scholar 

  18. B. Sundman, B. Jansson, and J.-O. Andersson, Calphad 9, 153 (1985).

    Article  Google Scholar 

  19. D.N. Reshef, Y.A. Reshef, H.K. Finucane, S.R. Grossman, G. McVean, P.J. Turnbaugh, E.S. Lander, M. Mitzenmacher, and P.C. Sabeti, Science 334, 1518 (2011).

    Article  Google Scholar 

  20. D.A. Freedman, Statistical models: theory and practice (London: Cambridge University Press, 2009).

    Book  Google Scholar 

  21. D.J. MacKay, Neural Comput. 4, 415 (1992).

    Article  Google Scholar 

  22. M.E. Tipping, J. Mach. Learn. Res. 1, 211 (2001).

    MathSciNet  Google Scholar 

  23. N.S. Altman, Am. Stat. 46, 175 (1992).

    Google Scholar 

  24. L. Breiman, Mach. Learn. 45, 5 (2001).

    Article  Google Scholar 

  25. C. Cortes and V. Vapnik, Mach. Learn. 20, 273 (1995).

    Google Scholar 

  26. J. Peng, S. Lee, A. Williams, J.A. Haynes, and D. Shin, Calphad 68, 101733 (2020).

    Article  Google Scholar 

  27. S. Lee, J. Peng, A. Williams, and D. Shin, J. Open Sour. Softw. 5, 1656 (2020).

    Article  Google Scholar 

  28. P. J. Maziasz, JOM, 41, 14 (1989).

    Article  Google Scholar 

  29. B. Schlkopf, A.J. Smola, and F. Bach, Learning with kernels: support vector machines, regularization, optimization, and beyond (Cambridge: MIT Press, 2018).

    Book  Google Scholar 

  30. R.E. Walpole and R.H. Myers, Probability and statistics for engineers and scientists (London: Pearson Education, 2012).

    MATH  Google Scholar 

  31. R.A. Armstrong, Ophthal. Physiol. Opt. 39, 316 (2019).

    Article  Google Scholar 

  32. J. Peng, Y. Yukinori, J. A. Hawk, E. Lara-Curzio, and D. Shin, npj Comput. Mater. 6, 141 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This research was sponsored by the Department of Energy, Energy Efficiency and Renewable Energy, Vehicle Technologies Office (VTO), Powertrain Materials Core Program. This research used resources of the Compute and Data Environment for Science (CADES) at Oak Ridge National Laboratory, which is supported by the DOE Office of Science under Contract No. DE-AC05-00OR22725. The authors thank Chris Layton for his support with using CADES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongwon Shin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This manuscript has been authored by UT-Battelle, LLC, under Contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (CSV 94 kb)

Supplementary material 1 (PDF 152 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, J., Yamamoto, Y., Brady, M.P. et al. Uncertainty Quantification of Machine Learning Predicted Creep Property of Alumina-Forming Austenitic Alloys. JOM 73, 164–173 (2021). https://doi.org/10.1007/s11837-020-04423-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04423-x

Navigation