Skip to main content
Log in

Insights into Defect-Mediated Nucleation of Equilibrium B2 Phase in Face-Centered Cubic High-Entropy Alloys

  • Defect and Phase Transformation Pathway Engineering for Desired Microstructures
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Though a fine-scale second-phase distribution is a potent strengthening mechanism for alloys, achieving a high precipitate density is often difficult owing to sluggish precipitation kinetics and limited nucleation sites. More specifically, in case of transition-element-based complex concentrated alloys (CCAs) or high-entropy alloys (HEAs), precipitation of the equilibrium strengthening phase, such as the ordered B2 phase, can be limited due to its high nucleation barrier for homogeneous precipitation within the face-centered cubic (FCC) matrix. This can lead to competing homogeneous nucleation of a metastable ordered L12 phase, which has a substantially lower nucleation barrier since it is isostructural with the FCC matrix. Using three different CCAs/HEAs as examples, thermomechanical processing has been employed to introduce a large number density of homogeneously distributed heterogeneous nucleation sites within the FCC matrix, to manipulate the phase fraction, morphology, and distribution of B2 precipitates. This approach of tailoring the microstructure is widely applicable to other multicomponent alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Sathiyamoorthi and H. Seop Kim, Prog. Mater. Sci., 100709 (2020).

  2. R.S. Mishra, R.S. Haridas, and P. Agrawal, Mater. Sci. Eng. A 812, 141085. (2021).

    Article  Google Scholar 

  3. Y. Zhu, K. Ameyama, P.M. Anderson, I.J. Beyerlein, H. Gao, H.S. Kim, E. Lavernia, S. Mathaudhu, H. Mughrabi, R.O. Ritchie, N. Tsuji, X. Zhang, and X. Wu, Mater. Res. Lett. 9, 1. (2021).

    Article  Google Scholar 

  4. D.B. Miracle and O.N. Senkov, Acta Mater. 122, 448. (2017).

    Article  Google Scholar 

  5. B. Cantor, Prog. Mater. Sci., 100754 (2020).

  6. S. Dasari, B. Gwalani, A. Jagetia, V. Soni, S. Gorsse, and R. Banerjee, Sci. Rep. 10, 1. (2020).

    Article  Google Scholar 

  7. B. Gwalani, S. Gorsse, D. Choudhuri, M. Styles, Y. Zheng, R.S. Mishra, and R. Banerjee, Acta Mater. 153, 169. (2018).

    Article  Google Scholar 

  8. S. Dasari, Y.-J. Chang, A. Jagetia, V. Soni, A. Sharma, B. Gwalani, S. Gorsse, A.-C. Yeh, and R. Banerjee, Mater. Sci. Eng. A 805, 140551. (2021).

    Article  Google Scholar 

  9. B. Gwalani, S. Gorsse, D. Choudhuri, Y. Zheng, R.S. Mishra, and R. Banerjee, Scr. Mater. 162, 18. (2019).

    Article  Google Scholar 

  10. B. Gwalani, A.V. Ayyagari, D. Choudhuri, T. Scharf, S. Mukherjee, M. Gibson, and R. Banerjee, Mater. Chem. Phys. 210, 197. (2018).

    Article  Google Scholar 

  11. M.-H. Tsai, K.-Y. Tsai, C.-W. Tsai, C. Lee, C.-C. Juan, and J.-W. Yeh, Mater. Res. Lett. 1, 207. (2013).

    Article  Google Scholar 

  12. R. Feng, M.C. Gao, C. Zhang, W. Guo, J.D. Poplawsky, F. Zhang, J.A. Hawk, J.C. Neuefeind, Y. Ren, and P.K. Liaw, Acta Mater. 146, 280. (2018).

    Article  Google Scholar 

  13. S. Dasari, A. Jagetia, V. Soni, B. Gwalani, S. Gorsse, and R. Banerjee, Mater. Res. Lett. 8, 399. (2020).

    Article  Google Scholar 

  14. Z. Wu, H. Bei, G.M. Pharr, and E.P. George, Acta Mater. 81, 428. (2014).

    Article  Google Scholar 

  15. A. Jagetia, M.S.K.K.Y. Nartu, S. Dasari, A. Sharma, B. Gwalani, and R. Banerjee, Mater. Res. Lett. 9, 213. (2021).

    Article  Google Scholar 

  16. B. Gwalani, V. Soni, M. Lee, S. Mantri, Y. Ren, and R. Banerjee, Mater. Des. 121, 254. (2017).

    Article  Google Scholar 

  17. H.R. Sistla, J.W. Newkirk, and F. Frank Liou, Mater. Des. 81, 113. (2015).

    Google Scholar 

  18. S. Niu, H. Kou, T. Guo, Y. Zhang, J. Wang, and J. Li, Mater. Sci. Eng. A 671, 82. (2016).

    Article  Google Scholar 

  19. C. Li, J.C. Li, M. Zhao, and Q. Jiang, J. Alloys Compd. 504, S515. (2010).

    Article  Google Scholar 

  20. J.Y. He, H. Wang, Y. Wu, X.J. Liu, H.H. Mao, T.G. Nieh, and Z.P. Lu, Intermetallics 79, 41. (2016).

    Article  Google Scholar 

  21. Y.L. Zhao, T. Yang, Y. Tong, J. Wang, J.H. Luan, Z.B. Jiao, D. Chen, Y. Yang, A. Hu, C.T. Liu, and J.-J. Kai, Acta Mater. 138, 72. (2017).

    Article  Google Scholar 

  22. J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, and Z.P. Lu, Acta Mater. 102, 187. (2016).

    Article  Google Scholar 

  23. Y.-J. Chang, and A.-C. Yeh, J. Alloys Compd. 653, 379. (2015).

    Article  Google Scholar 

  24. S. Dasari, A. Jagetia, Y.-J. Chang, V. Soni, B. Gwalani, S. Gorsse, A.-C. Yeh, and R. Banerjee, J. Alloys Compd. 830, 154707. (2020).

    Article  Google Scholar 

  25. S. Dasari, A. Sarkar, A. Sharma, B. Gwalani, D. Choudhuri, V. Soni, S. Manda, I. Samajdar, and R. Banerjee, Acta Mater. 202, 448. (2021).

    Article  Google Scholar 

  26. N.V. Allaverdova, V.K. Portnoy, L.A. Kucherenko, A.V. Ruban, and V.I. Bogdanov, J. Less-Common Met. 139, 273. (1988).

    Article  Google Scholar 

  27. Y.L. Hao, R. Yang, Y. Song, Y.Y. Cui, D. Li, M. Niinomi, and M. Mater, Sci. Eng. A 365, 85. (2004).

    Article  Google Scholar 

  28. D. Choudhuri, S. Shukla, W.B. Green, B. Gwalani, V. Ageh, R. Banerjee, and R.S. Mishra, Mater. Res. Lett. 6, 171. (2018).

    Article  Google Scholar 

  29. D. Choudhuri, S. Shukla, B. Gwalani, R. Banerjee, and R.S. Mishra, Mater. Res. Lett. 7, 40. (2019).

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the US Air Force Office of Scientific Research under grant FA9550-17-1-0395. The authors acknowledge the Materials Research Facility (MRF) at the University of North Texas for accessing microscopy and characterization facilities. B.G. acknowledges support by Pacific Northwest National Laboratory’s (PNNL) open call laboratory directed research and development (LDRD) program. PNNL is a multiprogram national laboratory operated by Battelle for the US DOE under contract DE-AC05-76RL01830.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abhishek Sharma or Rajarshi Banerjee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicting interests which may influence the results reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 225 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Gwalani, B., Dasari, S. et al. Insights into Defect-Mediated Nucleation of Equilibrium B2 Phase in Face-Centered Cubic High-Entropy Alloys. JOM 73, 2320–2331 (2021). https://doi.org/10.1007/s11837-021-04754-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04754-3

Navigation