Skip to main content

Advertisement

Log in

Physical, Morphological, and Mechanical Characterization of Al-4032/GMP Composite Fabricated Through Stir Casting

  • Characterization of Waste-Derived Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The disposal of waste granite marble powder (GMP) causes environmental problems. The present work reports the impact of waste GMP as a reinforcement to produce composites. The Al-4032/GMP composites with 0%, 4%, 6%, and 8% (by weight) GMP have been fabricated through stir casting. A maximum 0.63% increase in theoretical density while a maximum 5.65% decrease in experimental density has been recorded for 8% reinforcement. The microstructure of the as-cast samples has been analyzed using an optical microscope, x-ray diffraction, and scanning electron microscope equipped with energy-dispersive x-ray spectroscopy. Other properties, such as ultimate tensile strength, micro-hardness, and impact strength of the composites, were enhanced from 69.4 MPa to 115 MPa, 131.4 HV to 174.1 HV, and 22.4 J to 32 J, respectively, because of the addition of GMP particles. Among all, the Al-4032/6%GMP composite appears to possess the best combination of all mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AMC:

Aluminum metal matrix composite

ASTM:

American Society for Testing and Materials

BHN:

Brinell hardness number

EDS:

Energy-dispersive x-ray spectroscopy

GMP:

Granite marble powder

HV:

Vickers hardness

J:

Joule

MD:

Marble dust

MMC:

Metal matrix composite

MPa:

Mega pascal

OM:

Optical microscope

SEM:

Scanning electron microscope

UTM:

Universal testing machine

UTS:

Ultimate tensile strength

WEDM:

Wire electric discharge machining

XRD:

X-ray diffraction

r :

Radius of the sample

h :

Height of the sample

\(\rho_{{{\text{exp}}}}\) :

Experimental density of the sample

\(\rho_{{\text{m}}}\) :

Density of matrix

\(\rho_{{\text{r}}}\) :

Density of reinforcement

\(\rho_{{{\text{th}}}}\) :

Theoretical density of the sample

\(W_{{\text{m}}}\) :

Weight fractions of the matrix

\(W_{{\text{r}}}\) :

Weight fractions of the reinforcement

References

  1. M.Y. Çelik and E. Sabah, J. Environ. Manage. 87, 106 (2008).

    Article  Google Scholar 

  2. T. Uygunoğlu, I.B. Topçu, and A.G. Çelik, J. Clean. Prod. 84, 691 (2014).

    Article  Google Scholar 

  3. J.A. Geiger and A.L. Walker, JOM. 43, 8 (1991).

    Article  Google Scholar 

  4. N. Suresh, S. Venkateswaran, and S. Seetharamu, Int. J. Cast Met. Res. 24, 118 (2011).

    Article  Google Scholar 

  5. Y. Sahin and M. Acilar, Part A Appl. Sci. Manuf. 34, 709 (2003).

    Article  Google Scholar 

  6. V.K. Lindroos and M.J. Talvitie, J. Mater. Process. Tech. 53, 273 (1995).

    Article  Google Scholar 

  7. H. Kala, K.K.S. Mer, and S. Kumar, Procedia Mater. Sci. 6, 1951 (2014).

    Article  Google Scholar 

  8. C. Borsellino, L. Calabrese, and G. Di Bella, Constr. Build. Mater. 23, 1915 (2009).

    Article  Google Scholar 

  9. G. Ahmetli, M. Dag, H. Deveci, and R. Kurbanli, J. Appl. Polym. Sci. 125, 24 (2012).

    Article  Google Scholar 

  10. A.H. Awad and M.H. Abdellatif, Compos. Part B Eng. 173, 106948 (2019).

    Article  Google Scholar 

  11. H. Hebhoub, H. Aoun, M. Belachia, H. Houari, and E. Ghorbel, Constr. Build. Mater. 25, 1167 (2011).

    Article  Google Scholar 

  12. A.A. Aliabdo, A.E.M. Abd Elmoaty, and E.M. Auda, Constr. Build. Mater. 50, 28 (2014).

    Article  Google Scholar 

  13. P.N. Raghunath, Sci. Iran. 26, 3159 (2019).

    Google Scholar 

  14. S.R. Kumar, A. Patnaik, and I.K. Bhat, J. Compos. Mater. 51, 1997 (2017).

    Article  Google Scholar 

  15. A. Meena, H.S. Mali, A. Patnaik, and S.R. Kumar, Polym. Compos. 39, E321 (2018).

    Article  Google Scholar 

  16. J. Hashim, L. Looney, and M.S.J. Hashmi, J. Mater. Process. Technol. 119, 329 (2001).

    Article  Google Scholar 

  17. M.H. Lee, J.H. Kim, J.S. Park, W.T. Kim, and D.H. Kim, Mater. Sci. Forum. 475, 3427 (2005).

    Article  Google Scholar 

  18. A. Sakthivel, R. Palaninathan, R. Velmurugan, and P. Raghothama Rao, J. Mater. Sci. 43, 7047 (2008).

    Article  Google Scholar 

  19. M. Mahendra Boopathi, K.P. Arulshri, and N. Iyandurai, Am. J. Appl. Sci. 10, 219 (2013).

    Article  Google Scholar 

  20. V. Gautam, A. Patnaik, and I.K. Bhat, SILICON 8, 133 (2016).

    Article  Google Scholar 

  21. S. Gangwar, I.K. Bhat, and A. Patnaik, SILICON 9, 249 (2017).

    Article  Google Scholar 

  22. S. Gangwar and V.K. Pathak, Mater. Today Commun. 25, 101615 (2020).

    Article  Google Scholar 

  23. V.K. Sharma, S. Chaudhary, R.C. Singh, S. Vikas, and V. Goel, Mater. Res. Express. 6, 1265f6 (2020).

    Article  Google Scholar 

  24. C.H. Gireesh, K.G. Durga Prasad, and K. Ramji, J. Compos. Sci. 2, 49 (2018).

    Article  Google Scholar 

  25. D.M. Schuster, M.D. Skibo, R.S. Bruski, R. Provencher, and G. Riverin, JOM. 45, 26 (1993).

    Article  Google Scholar 

  26. Y. Nishida, N. Izawa, and Y. Kuramasu, Metall. Mater. Trans. A. 30, 839 (1999).

    Google Scholar 

  27. P.S. Ling and M. Gupta, Mater. Sci. Technol. 16, 568 (2000).

    Article  Google Scholar 

  28. J.B. Fogagnolo, E.M. Ruiz-Navas, M.A. Simón, and M.A. Martinez, J. Mater. Process. Technol. 143, 792 (2003).

    Article  Google Scholar 

  29. Y. Yang, R. Boom, B. Irion, D.J. Van Heerden, P. Kuiper, and H. De Wit, Chem. Eng. Process.: Process Intensif. 51, 53 (2012).

    Article  Google Scholar 

  30. K.K. Chawla, In Compos. Mater. Springer, Cham, 517 (2019).

  31. N.A. Shuaib, S.O. Ismail, A.A. Samat, A.I. Azmi, and P.T. Mativenga, In Adv. in Mach. of Compos. Mater. Springer, Cham, 527 (2021).

  32. V.S. Aigbodion and S.B. Hassan, Mater. Sci. Eng. A. 447, 355 (2007).

    Article  Google Scholar 

  33. M. Agarwal and R. Srivastava, Trans. Indian Ceram. Soc. 78, 94 (2019).

    Article  Google Scholar 

  34. R. Manikandan, T.V. Arjunan, and A.R. Akhil, Compos. Part B Eng. 183, 107668 (2020).

    Article  Google Scholar 

  35. S. Kumar, R.S. Panwar, and O.P. Pandey, Ceram. Int. 39, 6333 (2013).

    Article  Google Scholar 

  36. B. Gobalakrishnan, C. Rajaravi, G. Udhayakumar, and P.R. Lakshminarayanan, Met. Mater. Int. 12, 1 (2020).

    Article  Google Scholar 

  37. A. Bhowmik, D. Dey, and A. Biswas, SILICON 15, 1 (2020).

    Google Scholar 

  38. N. Pandey, S.C. Ram, I. Chakrabarty, and M.R. Majhi, Trans. Indian Ceram. Soc. 79, 188 (2020).

    Article  Google Scholar 

  39. S.O. Akinwamide, B.T. Abe, O.J. Akinribide, B.A. Obadele, and P.A. Olubambi, Int. J. Adv. Manuf. Technol. 109, 975 (2020).

    Article  Google Scholar 

  40. K. Raja, V.S. Chandra Sekar, V. Vignesh Kumar, T. Ramkumar, and P. Ganeshan, Arab. J. Sci. Eng. 45, 9481 (2020).

    Article  Google Scholar 

  41. J. Hashim, L. Looney, and M.S.J. Hashmi, J. Mater. Process. Technol. 123, 251 (2002).

    Article  Google Scholar 

  42. J. Hashim, L. Looney, and M.S.J. Hashmi, J. Mater. Process. Technol. 123, 258 (2002).

    Article  Google Scholar 

  43. N. Ahamad, A. Mohammad, K.K. Sadasivuni, and P. Gupta, J. Compos. Mater. 54, 2985 (2020).

    Article  Google Scholar 

  44. S.N. Ahmad, J. Hashim, and M.I. Ghazali, J. Compos. Mater. 39, 451 (2005).

    Article  Google Scholar 

  45. M.A. Chaudhry, L. Ali, K.M. Ghauri, and J. Iqbal, Mater. Res. Express. 6, 095032 (2019).

    Article  Google Scholar 

  46. M.E. Glicksman, Mater. Sci. Eng. 65, 45 (1984).

    Article  Google Scholar 

  47. W. Zhou and Z.M. Xu, J. Mater. Process. Technol. 63, 358 (1997).

    Article  Google Scholar 

  48. P. Rohatgi, B. Schultz, and W. Milwaukee, Casting. 15, 390 (2018).

    Google Scholar 

  49. P.K. Swain, K. Das Mohapatra, R. Das, A.K. Sahoo, and A. Panda, Mech. Ind. 21, 307 (2020).

    Article  Google Scholar 

  50. A.M. Rajesh, M. Kaleemulla, S. Doddamani, and B. KN, Adv. Compos. Lett. 28, 1 (2019).

    Google Scholar 

  51. P. Suresh, K. Marimuthu, S. Ranganathan, and T. Rajmohan, Trans. Nonferrous Met. Soc. China. 24, 2805 (2014).

    Article  Google Scholar 

  52. S. Mohammed and A.K. Birru, Trans. Indian Ceram. Soc. 78, 137 (2019).

    Article  Google Scholar 

  53. S. Ouyang, Y. Li, S. Li, D. Ouyang, R. Xiang, and N. Xu, Trans. Indian Ceram. Soc. 79, 182 (2020).

    Article  Google Scholar 

  54. B.C. Pai, G. Ramani, R.M. Pillai, and K.G. Satyanarayana, J. Mater. Sci. 30, 1903 (1995).

    Article  Google Scholar 

  55. L. Poovazhagan, K. Kalaichelvan, A. Rajadurai, and V. Senthilvelan, Procedia Eng. 64, 681 (2013).

    Article  Google Scholar 

  56. G. Singh and S. Goyal, Part. Sci. Technol. 36, 154 (2018).

    Article  Google Scholar 

  57. A. Seshappa and B. Anjaneya Prasad, SILICON 9, 1 (2020).

    Google Scholar 

  58. N. Parvin, R. Assadifard, P. Safarzadeh, S. Sheibani, and P. Marashi, Mater. Sci. Eng. A. 492, 134 (2008).

    Article  Google Scholar 

Download references

Acknowledgments

The authors grateful to Prof. N M Suri, Department of Production & Industrial Engineering, Punjab Engineering College, Chandigarh for permitting fabrication of composite materials. The authors also wishes to acknowledge the expert guidance by Retired Prof. S K Nath, IIT, Roorkee and Prof. Harpreet Singh, IIT, Ropar for analysis of research. Thanks are also due to anonymous expert reviewers for making useful comments to improve the manuscript. The microstructure and micro hardness testing have been conducted at Department of Mechanical Engineering, SLIET, Longowal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep K. Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, P., Singh, P.K. Physical, Morphological, and Mechanical Characterization of Al-4032/GMP Composite Fabricated Through Stir Casting. JOM 74, 1340–1349 (2022). https://doi.org/10.1007/s11837-022-05159-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05159-6

Navigation