Skip to main content

Advertisement

Log in

A Review of Computational Capabilities and Requirements in High-Resolution Simulation of Nonferrous Pyrometallurgical Furnaces

  • Computational Modeling of Metallurgical Furnaces
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Tremendous progress has been made over the last several decades in improving the pyrometallurgical processing routes of nonferrous metals, such as aluminum, copper, and lead. Advances in the numerical modeling of pyrometallurgical processes has aided in these improvements by providing a better understanding of the complex transport phenomena occurring in modern furnaces. However, there is a need for a comprehensive discussion of the numerical modeling of a primary and a secondary nonferrous pyrometallurgical furnaces. This review provides such a discussion by surveying recent attempts at capturing the physico-chemical phenomena occurring within these furnaces, including gas-phase combustion, melting/smelting, and multiphase heat- and mass-transfer with the molten phases.This work then identifies a complete set of approaches for simulating these types of furnaces and provides recommendations for applying high-resolution numerical tools towards full-furnace simulation. By identifying gaps in the current state of the art, this review offers suggestions for future developments in commercial codebases, outlining the path to fulfilling the promise of CFD-enabled pyrometallurgy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CFD:

Computational fluid dynamics

DEM:

Discrete element method

EMP:

Eulerian multiphase

FCF:

Flash converting furnaces

FSF:

Flash smelting furnace

LMP:

Lagrangian multiphase

MCM:

Multicomponent mixture

MPI:

message-passing interface

MSF:

Multiphase segregated flow

MUSIG:

Inhomogeneous multiple size groups

NMI:

Nonferrous metal industry

PBM:

Population balance method

PSC:

Peirce-Smith converters

QSL:

Queneau–Schuhmann–Lurgi

TFM:

Two-fluid model

TSL:

Top submerged lance

VOF:

Volume of fluid

RANS:

Reynolds-averaged Navier Stokes

References

  1. A. Elshkaki, T.E. Graedel, L. Ciacci and B.K. Reck, Environ. Sci. Technol. 52, 2491 (2018).

    Article  Google Scholar 

  2. U.S. Geological Survey: Mineral Commodity Summaries 2021, 2021.

  3. T. Watari, K. Nansai and K. Nakajima, Resour. Conserv. Recycl. 164, 105107 (2021).

    Article  Google Scholar 

  4. International Lead and Zinc Study Group (ILZSG), The World Lead Factbook 2019, 2020.

  5. International Copper Study Group (ICSG), The World Copper Factbook 2020., 2020.

  6. M. Li, Z. Mi, D.M. Coffman and Y.M. Wei, J. Clean. Product. 192, 252 (2018).

    Article  Google Scholar 

  7. P. King, B.M. Golchert, T. Li, M. Hassan and Q. Han, Energy Efficient Operation of Aluminum Furnaces, DOE/ARC-2005-031 (Albany: Albany Research Center, 2005).

  8. C. Belt, B. Golchert, P. King, R. Pterson and J. Tessandori, Light Metals (Springer, Cham, 2006), pp 881–885.

    Google Scholar 

  9. F. White and J. Majdalani, Viscous Fluid Flow, vol 3 (McGraw-Hill, New York, 2006).

    Google Scholar 

  10. C. Mei, X. Peng, P. Zhou, J. Zhou and N. Zhou, Simulation and Optimization of Furnaces and Kilns for Nonferrous Metallurgical Engineering, 1st edn (Metallurgical Industry Press, Beijing, 2010).

    Book  Google Scholar 

  11. E. Jak, in Extraction 2018, (Berlin: Springer, 2018), pp. 103–25.

  12. M. Laputka and W. Xie, Min. Metall. Explor. 38, 1135 (2021).

    Google Scholar 

  13. S. Kuang, Z. Li and A. Yu, Steel Res. Int. 89, 1700071. https://doi.org/10.1002/srin.201700071 (2018).

    Article  Google Scholar 

  14. S. Ghosh, N.N. Viswanathan and N.B. Ballal, Steel Res. Int. 88, 1600140. https://doi.org/10.1002/srin.201600440 (2017).

    Article  Google Scholar 

  15. P.B. Abhale, N.N. Viswanathan and H. Saxén, Trans. Inst. Min. Metall. 129, 166 (2020).

    Google Scholar 

  16. K. Chattopadhyay, M. Isac and R.I.L. Guthrie, Ironmak. Steelmak. 37, 554 (2010).

    Article  Google Scholar 

  17. K. Chattopadhyay, M. Isac and R.I.L. Guthrie, Ironmak. Steelmak. 37, 562 (2010).

    Article  Google Scholar 

  18. T. Okosun, A.K. Silaen and C.Q. Zhou, Steel Res. Int. 92, 190046. https://doi.org/10.1002/srin.201900046 (2021).

    Article  Google Scholar 

  19. J.J. Moore, Chemical Metallurgy (Butterworths, London, 1981).

    Google Scholar 

  20. N. Huda, J. Naser, G. Brooks, M.A. Reuter and R.W. Matusewicz, Metall. Mater. Trans. B 43, 39 (2010).

    Article  Google Scholar 

  21. N. Huda, J. Naser, G. Brooks, M.A. Reuter and R.W. Matusewicz, Metall. Mater. Trans. B 43, 39 (2012).

    Article  Google Scholar 

  22. A. Filzwieser, K. Gamweger, O. Zach and G. Lukesch, RHI Bull. 2003, 1 (2003).

    Google Scholar 

  23. Y. Yang, B. Zhou, J. Post, E. Scheepers and M. Reuter, in TMS Fall Extraction and Processing Division: Sohn International Symposium, San Diego, CA, United States, 2006, pp. 417–33.

  24. Y. Yang, B. Zhou, J. Post, E. Scheepers, M. Reuter and R. Boom, in 5th International Conference on CFD in the Process Industries, CSIRO, Melbourne, Australia, 2006.

  25. K. Song and A. Jokilaakso, Miner. Process. Extract Metall. Rev. 2020, 1 (2020).

    Google Scholar 

  26. P. Taskinen, G. Akdogan, I. Kojo, M. Lahtinen and A. Jokilaakso, Miner. Process. Extract Metall. Rev. 128, 58 (2019).

    Google Scholar 

  27. V. Bojarevics and J.W. Evans, Light Metals 2015 (Springer, Cham, 2015), pp 783–788.

    Book  Google Scholar 

  28. Y. Feng, M.P. Schwarz, W. Yang and M. Cooksey, Metall. Mater. Trans. B 46, 1959 (2015).

    Article  Google Scholar 

  29. D.R. Gunasegaram and D. Molenaar, J. Clean. Product. 93, 174 (2015).

    Article  Google Scholar 

  30. Z. Zhao, Y. Feng, M.P. Schwarz, P.J. Witt, Z. Wang and M. Cooksey, Metall. Mater. Trans. B 48, 1200 (2017).

    Article  Google Scholar 

  31. K.E. Einarsrud, S.E. Gylver and E. Manger, in Light Metals 2018, (Cham: Springer 2018).

  32. A.M.M. Shamroukh, S.A. Salman, W. Berends, W.A. Abdel-Fadeel and G.T. Abdel-Jaber, in Light Metals 2020, (Cham: Springer, 2020), pp. 1267–77.

  33. M. Kavand, Fuel 297, 120692. https://doi.org/10.1016/j.fuel.2021.120692 (2021).

    Article  Google Scholar 

  34. A. Cubeddu, V. Nandana and U. Janoske, in Light Metals 2019, (Cham: Springer 2019), pp. 605–13.

  35. M. Ali and M. Aly, J. Petrol. Min. Eng. 22, 71 (2020).

    Google Scholar 

  36. G.M.A. Mahran and M.M. Ali, Miner. Eng. 157, 106534. https://doi.org/10.1016/j.mineng.2020.106534 (2020).

    Article  Google Scholar 

  37. M. Schlesinger, Aluminum Recycling, 2nd edn (CRC, Boca Raton, 2014).

    Google Scholar 

  38. T. Rosenqvist, Principles of Extractive Metallurgy (McGraw-Hill, New York, 1974).

    Google Scholar 

  39. C.E. Baukal, V. Gershtein and X. Li, Computational Fluid Dynamics in Industrial Combustion (CRC, Boca Raton, 2001).

    MATH  Google Scholar 

  40. A. Inc., 2021.

  41. A.O. Nieckele, M.F. Naccache and M.S.P. Gomes, J. Energy Resour. Technol. 126, 72 (2004).

    Article  Google Scholar 

  42. A.O. Nieckele, M.F. Naccache and M.S.P. Gomes, Appl. Therm. Eng. 31, 841 (2011).

    Article  Google Scholar 

  43. A.O. Nieckele, P. Rio, M. Sebastião and P. Gomes, J. Braz. Soc. Mech. Sci. Eng. 32, 437 (2010).

    Article  Google Scholar 

  44. A.O. Nieckele, M.F. Naccache, M.S.P. Gomes and R.C. Menezes, in Proceedings of IMECE2006, 2006, pp. 287–96.

  45. J. Furu, T. Bergstrom and K. Mathinsen, in 12th International Conference on Aluminum Alloys (ICAA12), The Japan Institue of Light Metals, 2010, pp. 2287–92.

  46. J. Furu, A. Buchholz, T.H. Bergstrøm and K. Marthinsen, in Light Metals 2012, (Cham: Springer, 2012), pp. 1037–42.

  47. J. Furu and A. Buchholz, in Light Metals 2015, Cham: Springer, 2015), pp. 895–900.

  48. A. Buchholz and J. Rodseth, in Light Metals 2011, (Cham: Springer, 2011), pp. 1179–84.

  49. A. Kumar, R. Venuturumilli and P.E. King, in EPD Congress 2008, TMS, 2008, pp. 61–6.

  50. A. Kumar, R. Venuturumilli, L. Kiss and G. Walter, in TMS Supplemental Proceedings, Volume 3, General Paper Selections, 2008, pp. 115–20.

  51. G. Walter, L. Kiss and A. Charette, in Light Metals 2006, (Cham: Springer, 2006), pp. 741–6.

  52. B.M. Golchert, C.Q. Zhou, A. Quenette, Q. Han and P.E. King, in Light Metals 2005, (Cham: Springer, 2005), pp. 887–92.

  53. P.E. King, M.C. Hayes, T.X. Li, Q. Han and B.M. Golchert, in Light Metals 2005, (Cham: Springer, 2005), pp. 889–904.

  54. S.L. Chang, S.A. Lottes and M. Petrick, Multiphase Integral Reacting Flow Computer Code (ICOMFLO), User`s Guide, (Argonne, IL: US DOE, 1997).

  55. J. Wang, P. Xu, H. Yan, J. Zhou, S. Li, G. Gui and W. Li, Trans. Nonferr. Metals Soc. China 23, 3125. https://doi.org/10.1016/S1003-6326(13)62843-5 (2013).

    Article  Google Scholar 

  56. L. Qiu, Y. Feng, Z. Chen, Y. Li and X. Zhang, Appl. Therm. Eng. 145, 315 (2018).

    Article  Google Scholar 

  57. B. Zhou, Y. Yang and M.A. Reuter, in Proc. TMS Fall 2002, 2002, pp 527-537.

  58. B. Zhou, Y. Yang and M. Reuter, in Proc. Yazawa International Symposium on Metallurgical and Materials Processing, 2003, pp. 1249–58.

  59. B. Zhou, Y. Yang and M. Reuter, in Light Metals 2004, (Cham: Springer, 2004), pp. 919–24.

  60. B. Zhou, Y. Yang, M.A. Reuter and U.M.J. Boin, Miner. Eng. 19, 299 (2006).

    Article  Google Scholar 

  61. B. Zhou, Y. Yang, M.A. Reuter and U.M.J. Boin, Progr. Comput. Fluid Dyn. 7, 1 (2007).

    Article  Google Scholar 

  62. Ansys Inc., https://www.ansys.com.

  63. M. Schlesinger, K. Sole and W. Davenport, Extractive Metallurgy of Copper (Elsevier, Amsterdam, 2011).

    Google Scholar 

  64. J.P. Jylhä, N.A. Khan and A. Jokilaakso, Processes 8, 485 (2020).

    Article  Google Scholar 

  65. J.-P. Jylhä, S.P. Ari, J. Advisor and M.S.N. Khan, CFD-DEM Simulation of Two-Phase Flows in the Flash Smelting Settler, (Altair University, 2018).

  66. T. Ahokainen and A. Jokilaakso, Can. Metall. Q. 37, 275 (1998).

    Article  Google Scholar 

  67. CHAM, 2021.

  68. T. Ahokainen, A. Jokilaakso, P. Taskinen and M. Kytö, in TMS Fall Extraction and Processing Meeting, Sohn International Symposium, 2006, pp. 529–43.

  69. Altair, 2021.

  70. A. Schmidt, V. Montenegro and G.D. Wehinger, Metall. Mater. Trans. B 52, 405 (2021).

    Article  Google Scholar 

  71. Siemens Digital Industries Software, 2021.

  72. J. Zhou, J. Zhou, Z. Chen and Y. Mao, JOM 66, 1629 (2014).

    Article  Google Scholar 

  73. C.B. Solnordal, F.R.A. Jorgensen, P.T.L. Koh and A. Hunt, in Third International Conference on CFD in the Minerals and Process Industries, 2003, pp. 161–6.

  74. C.B. Solnordal, F.R.A. Jorgensen, P.T.L. Koh and A. Hunt, Appl. Math. Modell. 30, 1310 (2006).

    Article  Google Scholar 

  75. M. White, R. Haywood, D.J. Ranasinghe and S. Chen, in Eleventh International Conference on CFD in the Minerals and Process Industries, 2015, pp. 7–9.

  76. G. Tang, A.K. Silaen, H. Yan, Z. Cui, Z. Wang, H. Wang, K. Tang, P. Zhou and C.Q. Zhou, in 8th International Symposium on High-Temperature Metallurgical Processing , 2017.

  77. G. Tang, K. Tang, A. Silaen, H. Yan, Z. Cui, Z. Wang, H. Wang, P. Zhou and C. Zhou, in 9th International Symposium on High -Temperature Metallurgical Processing, 2018, pp. 103–14.

  78. L. Shui, Z. Cui, X. Ma, M.A. Rhamdhani, A. Nguyen and B. Zhao, Metall. Mater. Trans. B 46, 1218 (2015).

    Article  Google Scholar 

  79. D. Li, P. Li, X. Yao, C. Liu and Z. Dong, in PbZn 2020, 9th International Symposium on Lead and Zinc Processing, 2020, pp. 31–40.

  80. H.L. Zhang, C.Q. Zhou, W.U. Bing and Y.M. Chen, J. South. Afr. Inst. Min. Metall. 115, 457 (2015).

    Article  Google Scholar 

  81. T. Richter, O. Keplinger, N. Shevchenko, T. Wondrak, K. Eckert, S. Eckert and S. Odenbach, Int. J. Multiphase Flow 104, 32 (2018).

    Article  MathSciNet  Google Scholar 

  82. D. Obiso, M. Akashi, S. Kriebitzsch, B. Meyer, M. Reuter, S. Eckert and A. Richter, Metall. Mater. Trans. B 51, 1509 (2020).

    Article  Google Scholar 

  83. D. Obiso, S. Kriebitzsch, M. Reuter and B. Meyer, Metall. Mater. Trans. B 50, 2403 (2019).

    Article  Google Scholar 

  84. M. Akashi, O. Keplinger, N. Shevchenko, S. Anders, M.A. Reuter and S. Eckert, Metall. Mater. Trans. B 51, 124 (2020).

    Article  Google Scholar 

  85. H. Zhao, Y. Xiao, F. Liu and H.Y. Sohn, Metall. Mater. Trans. B 52, 3767. https://doi.org/10.1007/s11663-021-02290-8 (2021).

    Article  Google Scholar 

  86. J.J. Wijenayake and H.-S. Sohn, Hydrometallurgy 198, 105466. https://doi.org/10.1016/j.hydromet.2020.105466 (2020).

    Article  Google Scholar 

  87. D.K. Chibwe, G. Akdogan, P. Taskinen and J.J. Eksteen, J. South. Afr. Inst. Min. Metall. 115, 363 (2015).

    Article  Google Scholar 

  88. D.K. Chibwe, G. Akdogan, G.A. Bezuidenhout, J.P.T. Kapusta, S. Bradshaw and J.J. Eksteen, J. South. Afr. Inst. Min. Metall. 115, 349 (2015).

    Article  Google Scholar 

  89. D.K. Chibwe, G. Akdogan, C. Aldrich and R.H. Eric, Chem. Product Process Model 6, 1. https://doi.org/10.2202/1934-2659.1584 (2011).

    Article  Google Scholar 

  90. A. Vignes, Extractive Metallurgy 3, Processing Operations and Routes (Wiley, New York, 2013).

    Google Scholar 

  91. H. Zhao, X. Zhao, L. Mu, L. Zhang and L. Yang, Int. J. Miner. Metall. Mater. 26, 1092 (2019).

    Article  Google Scholar 

  92. H. Yan, G. Li, Z. Xu, P. Zhou and Z. Chenn, in 2012 Second International Conference on Intelligent System Design and Engineering Application, IEEE, 2012, pp. 1063–6.

  93. S. Yan, G. Tang, C.Q. Zhou and X. Guo, ACS Omega 4, 12449 (2019).

    Article  Google Scholar 

  94. J. Li, P. Zhou, Z. Liao, L. Chai, C.Q. Zhou and L. Zhang, Trans. Nonferr. Metals Soc. China 29, 1560 (2019).

    Article  Google Scholar 

  95. K. Tang, L. Zhang, L. Zhang and F. Tu, in PbZn 2020, 9th International Symposium on Lead and Zinc Processing, Springer, Cham, 2020, pp. 469–77.

  96. P.B. Queneau James, S.E., Downey, J.P., Livelli, G.M., Zinc-Lead Process., 3, 149 (2015).

  97. A. Anderson, J. Grogan, G. Bogin and P. Taylor, in Extraction 2018, (Berlin: Springer, 2018), pp. 881–90.

  98. A. Anderson, Computational Fluid Dynamic Modeling of a Secondary Lead Reverberatory Furnace, Colorado School of Mines, 2017.

  99. Siemens Digital Industries Software, Simcenter STAR-CCM+ User Guide, 2021.2., 2021.

  100. T. Kerry, A. Peters, E. Georgakopoulos, A. Hosseini, E. Offerman and Y. Yang, in PbZn 2020, 9th International Symposium on Lead and Zinc Processing , 2020.

  101. L.C. Capozzi, A.A. Barresi and R. Pisano, Powder Technol. 343, 834 (2019).

    Article  Google Scholar 

  102. L.C. Capozzi, A.A. Barresi and R. Pisano, Data Brief 22, 722 (2019).

    Article  Google Scholar 

  103. V. Rao, V. Kumar and A. Anderson, in REWAS 2022, Automation and Digitalization for Advanced Manufacturing, (2022).

Download references

Acknowledgements

This work was sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE), Advanced Manufacturing Office, High Performance Computing for Energy Innovation Program (HPC4EI), under contract DE-AC05-00OR22725 with UT-Battelle, LLC., through a Cooperative Research and Development Agreement with Gopher Resource, LLC (NFE-19-07865). The HPC4EI Program is managed by Lawrence Livermore National Laboratory for the U.S. Department of Energy. The authors would also like to thank Gopher Resource for research support and H. Sceats for editorial contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Anderson.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This manuscript has been co-authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains, and the publisher, by accepting the article for publication, acknowledges, that the US government has a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 368 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, A., Kumar, V., Rao, V.M. et al. A Review of Computational Capabilities and Requirements in High-Resolution Simulation of Nonferrous Pyrometallurgical Furnaces. JOM 74, 1543–1567 (2022). https://doi.org/10.1007/s11837-022-05169-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05169-4

Navigation