Skip to main content
Log in

Isothermal and Cyclic Oxidation of Haynes 282 Processed by Electron Beam Melting (EBM) and Laser Powder Bed Fusion (LPBF) in Dry Air at 800 and \(950~^{\circ }\hbox {C}\)

  • Environmental Degradation of Additively Manufactured Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The isothermal and cyclic oxidation behavior of Haynes 282 (H282) processed by laser powder bed fusion and electron beam melting was compared to its cast counterpart during exposures in air at 800 and \(950~^{\circ }\hbox {C}\). The specific microstructure of the AM alloys compared to coarse-grain cast 282 resulted in differences in oxidation rates, internal oxidation and spallation behavior. At \(800~^{\circ }\hbox {C}\), faster Ti diffusion to the surface due to the smaller grain size of the AM alloys led to Ti doping of the \({\hbox {Cr}_{2}\hbox {O}_3}\) scale and faster oxidation rates. The higher density of grain boundaries also resulted in more pronounced internal oxidation. At \(950~^{\circ }\hbox {C}\), a duplex \({\hbox {Cr}_{2}\hbox {O}_3}\) scale was observed with a dense inner layer and porous cracked outer layer with embedded \({\hbox {TiO}_2}\) particles. The impact of the external and internal oxide compositions and oxidation-induced elemental depletions on the oxidation lifetime, creep properties and spallation behavior is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L.M. Pike, Development of a fabricable gamma-prime strengthened superalloy. Paper presented at the 11th International Symposium on Superalloys, Champion, Pennsylvania, USA, 14-18 September (2008)

  2. P.F. Tortorelli, H. Wang, K.A. Unocic, M.L. Santella, J.P. Shingledecker, and V. Cedro, Long-Term Creep-Rupture Behavior of Inconel\(\text{\textregistered} \) 740 and Haynes\(\text{\textregistered} \) 282. Paper presented at the ASME 2014 Symposium on Elevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries, Seattle, Washington, USA, 25-27 March (2014)

  3. B.A. Pint, H. Wang, C.S. Hawkins, and K.A. Unocic, “Technical Qualification of New Materials for High Efficiency Coal-Fired Boilers and Other Advanced FE Concepts: Haynes\(\text{\textregistered} \) 282\(\text{\textregistered} \) ASME Boiler and Pressure Vessel Code Case” (OSTI.GOV 2020), https://www.osti.gov/biblio/1649169-technical-qualification-new-materials-high-efficiency-coal-fired-boilers-other-advanced-fe-concepts-haynes-asme-boiler-pressure-vessel-code-case. Accessed 20 September 2021

  4. L.M. Pike, and S.K. Srivastava, Mater. Sci. Forum (2008). https://doi.org/10.4028/www.scientific.net/MSF.595-598.661

    Article  Google Scholar 

  5. E. Essuman, L.R. Walker, P.J. Maziasz, and B.A. Pint, Mater. Sci. Technol. 29(7), 822–827 (2013)

    Article  Google Scholar 

  6. T. Dudziak, L. Boron, V. Deodeshmukh, J. Sobczak, N. Sobczak, M. Witkowska, W. Ratuszek, and K. Chrusciel,  J. Mater. Eng. Perform. 26(3), 1044–1056 (2017)

    Article  Google Scholar 

  7. B.A. Pint, and K.A. Unocic,  JOM 70 (2018)

  8. A. Deshpande, S. Deb Nath, S. Atre, and K. Hsu,  Metals 10(5) (2020)

  9. A.S. Shaikh, F. Schulz, K. Minet-Lallemand, and E. Hryha, Mater. Today Commun. 26, 102–038 (2021)

    Google Scholar 

  10. J. Boswell, J. Jones, N. Barnard, D. Clark, M. Whittaker, and R. Lancaster,  Mater. Des. 205, 109–725 (2021)

    Article  Google Scholar 

  11. K. Unocic, M. Kirka, E. Cakmak, D. Greeley, A. Okello, and S. Dryepondt,  Mater. Sci. Eng. A A 772, 138–607 (2020)

    Google Scholar 

  12. T. Sanviemvongsak, D. Monceau, and B. Macquaire, Corros. Sci. 141 (2018)

  13. C. Juillet, A. Oudriss, J. Balmain, X. Feaugas, and F. Pedraza,  Corros. Sci. 142, 266–276 (2018)

    Article  Google Scholar 

  14. S. Dryepondt, M.M. Kirka, and F.A. List, Oxidation behavior of Ni-based alloys fabricated by additive manufacturing. Paper presented at NACE CORROSION, Nashville, Tennessee, USA, 24-28 March (2019)

  15. T. Sanviemvongsak, D. Monceau, C. Desgranges, and B. Macquaire, Corros. Sci. 170, 108–684 (2020)

    Article  Google Scholar 

  16. M. Romedenne, R. Pillai, M. Kirka, and S. Dryepondt,  Corros. Sci. 171, 108–647 (2020)

    Article  Google Scholar 

  17. M.C. Kuner, M. Romedenne, P. Fernandez-Zelaia, and S. Dryepondt,  Addit. Manuf. 36, 101–431 (2020)

    Google Scholar 

  18. N. Ramenatte, A. Vernouillet, S. Mathieu, A. Vande Put, M. Vilasi, and D. Monceau,  Corros. Sci. 164, 108–347 (2020)

    Article  Google Scholar 

  19. T. Sanviemvongsak, D. Monceau, M. Madelain, C. Desgranges, J. Smialek, and B. Macquaire,  Corros. Sci. 192, 109,804 (2021)

    Article  Google Scholar 

  20. A. Casadebaigt, J. Hugues, and D. Monceau,  Oxid. Met. 90(5–6), 633–648 (2018)

    Article  Google Scholar 

  21. C. Siri, I. Popa, A. Vion, C. Langlade, and S. Chevalier,  Oxid. Met. 94(5), 527–548 (2020)

    Article  Google Scholar 

  22. C. Siri, I. Popa, A. Vion, C. Langlade, and S. Chevalier, Oxid. Met. 1–13 (2021)

  23. R. Purgert, J. Shingledecker, D. Saha, M. Thangirala, G. Booras, J. Powers, C. Riley, and H. Hendrix, “Materials for advanced ultrasupercritical steam turbines”(OSTI.GOV 2015), https://www.osti.gov/biblio/1243058-materials-advanced-ultrasupercritical-steam-turbines. Accessed 20 September 2021

  24. B.A. Pint, P.F. Tortorelli, and I.G. Wright,  Cyclic Oxid. High Temp. Mater. 27, 111–132 (1999)

    Google Scholar 

  25. K. Christofidou, H. Pang, W. Li, Y. Pardhi, C. Jones, N. Jones, and H. Stone, Superalloys 2020 (Springer, Berlin, 2020), pp. 1014–1023

    Book  Google Scholar 

  26. H. Nagai, and M. Okabayashi,  Trans. Jpn. Inst. Met. 22(10), 691–698 (1981)

    Article  Google Scholar 

  27. R. Pillai, M. Romedenne, J.A. Haynes, and B.A. Pint,  Oxid. Met. (2021). https://doi.org/10.1007/s11085-020-10017-4

    Article  Google Scholar 

  28. C.S. Giggins, and F.S. Pettit,  J. Electrochem. Soc. 118(11), 1782–1790 (1971)

    Article  Google Scholar 

  29. R. Duan, A. Jalowicka, K.A. Unocic, B.A. Pint, P. Huczkowski, A. Chyrkin, D. Grüner, R. Pillai, and W.J. Quadakkers,  Oxid. Met. 87(1), 11–38 (2017)

    Article  Google Scholar 

  30. M. Romedenne, R. Pillai, S. Dryepondt, and B.A. Pint,  Oxid. Met. 96, 589–612 (2021)

    Article  Google Scholar 

  31. P.J. Ennis, W.J. Quadakkers, and H. Schuster,  J. Phys. IV 3(C9), 979–986 (1993)

    Google Scholar 

  32. A. Chyrkin, P. Huczkowski, V. Shemet, L. Singheiser, and W.J. Quadakkers,  Oxid. Met. 75(3–4), 143–166 (2011)

    Article  Google Scholar 

  33. R. Pillai, H. Ackermann, and K. Lucka,  Corros. Sci. (2013). https://doi.org/10.1016/j.corsci.2012.11.040

    Article  Google Scholar 

  34. S.J.D. Matthew and J. Donachie, Superalloys: A Technical Guide, 2nd edn (United States: ASM International, 2002)

  35. J.L. Smialek,  J. Eng. Gas. Turbine Power 120(2), 370–374 (1998)

    Article  Google Scholar 

  36. J. Smialek, Crystals 60 (2021)

  37. D.G. Lees, Oxid. Met. 27(1–2), 75–81 (1987)

    Article  Google Scholar 

  38. I. Melas, and D.G. Lees,  Mater. Sci. Technol. 4(5), 455–456 (1988)

    Article  Google Scholar 

  39. P.Y. Hou,  J. Stringer, Oxid. Met. 38(5), 323–345 (1992)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank G. Garner, J. Wade, B. Johnston, T. Lowe, T. Jordan, V. Cox and C. O’Dell for the assistance with the experimental work and X. Chen at ORNL and Anand Kulkani at Siemens Corporation for providing us with the cast and LPBF H282 alloys, respectively. K. Kane, C. Parker and B.A. Pint are kindly acknowledged for their comments on the manuscript. The authors declare that they have no conflict of interest. Research was sponsored by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, and Office of Fossil Energy, Crosscutting Research Program, under contract DE-AC05-00OR22725 with UT-Battelle LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Romedenne.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Notice: This manuscript has been authored by UT-Battelle, LLC, under contract no. DE-AC05-00OR22725 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romedenne, M., Stack, P., Pillai, R. et al. Isothermal and Cyclic Oxidation of Haynes 282 Processed by Electron Beam Melting (EBM) and Laser Powder Bed Fusion (LPBF) in Dry Air at 800 and \(950~^{\circ }\hbox {C}\). JOM 74, 1–12 (2022). https://doi.org/10.1007/s11837-022-05201-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05201-7

Navigation