Skip to main content
Log in

Deformation Mechanism Transition in Additively Manufactured Compositionally Graded Fe-Base Alloys

  • Properties and Evolution of Defects and Interfaces
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Microstructure-dependent deformation and fracture behavior was investigated for an additively manufactured compositionally graded alloy (CGA) printed using the laser-directed energy deposition (L-DED) method to explore an alternative approach for dissimilar metal joints in nuclear energy systems. The electron backscatter diffraction (EBSD) maps from scanning electron microscopy (SEM) display a clear microstructural transition with decreasing austenite-forming elements (Ni and Mn), from an austenite (γ) dominant structure, to a complex composite structure containing ferrite (α), martensite (α′) and retained austenite, and then to a fully ferritic structure. EBSD data were recorded in situ during tensile testing in SEM, and the evolution of the deformation mechanism and microstructure was characterized using Kikuchi diffraction pattern analysis. Complementary analysis for high-resolution features was also performed using scanning transmission electron microscopy (STEM). The Ni/Mn-rich austenite-dominant microstructures showed a complex deformation mechanism of two-step martensitic transformation (γ→ε→α′), whereas the minor austenite phase retained in the ferrite and/or martensite matrix showed a single transformation route (γ→α′). Ordinary dislocation glide and twinning via partial dislocation glide were observed in the austenite deformation. Meanwhile, the ferrite and martensite grains deformed mainly by ordinary dislocation slips and grain rotation. Static tensile fracture was also highly dependent on local composition and phase constituents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Sireesha, V. Shankar, S.K. Albert, and S. Sundaresan, Mater. Sci. Eng. A 292, 74 (2000).

    Article  Google Scholar 

  2. J.W. Kim, K. Lee, J.S. Kim, and T.S. Byun, J. Nucl. Mater. 384, 212 (2009).

    Article  Google Scholar 

  3. Crack in Weld Area of Reactor Coolant System Hot Leg Piping at V.C. Summer: Recent Experience with Degradation of Reactor Pressure Vessel Head, USNRC Information Notice 2000-17, (2000).

  4. A. Joseph, S.K. Rai, T. Jayakumar, and N. Murugan, Inter. J. Press. Vessels Piping 82, 700 (2005).

    Article  Google Scholar 

  5. J.I. Bennetch, G.E. Modzelewski, L.L. Spain, and G.V. Rao, ASME PVP 437, 179 (2002).

    Google Scholar 

  6. W. Woo, D.K. Kim, E.J. Kingston, V. Luzin, F. Salvemini, and M.R. Hill, Mater. Sci. Eng. A 744, 618 (2019).

    Article  Google Scholar 

  7. B.E. Carroll, R.A. Otis, J.P. Borgonia, J. Suh, R.P. Dillon, A.A. Shapiro, D.C. Hofmann, Z.K. Liu, and A.M. Beese, Acta Mater. 108, 46 (2016).

    Article  Google Scholar 

  8. L.D. Bobbio, R.A. Otis, J.P. Borgonia, R.P. Dillon, A.A. Shapiro, Z.K. Liu, and A.M. Beese, Acta Mater. 127, 133 (2017).

    Article  Google Scholar 

  9. A. Reichardt, R.P. Dillon, J.P.C. Borgonia, A.A. Shapiro, B.W. McEnerney, T. Momose, and P. Hosemann, Mater. Des. 104, 404 (2016).

    Article  Google Scholar 

  10. T.S. Byun, B.E. Garrison, M.R. McAlister, X. Chen, M.N. Gussev, T.G. Lach, A. Le Coq, K. Linton, C.B. Joslin, J.K. Carver, F.A. List, R.R. Dehoff, and K.A. Terrani, J. Nucl. Mater. 548, 152849 (2021).

    Article  Google Scholar 

  11. J. Simpson, J. Haley, C. Cramer, O. Shafer, A. Eilliott, W. Peter, L. Love, R. Dehoff, Considerations for Application of Additive Manufacturing to Nuclear Reactor Core Components, ORNL/TM-2019-1190 (Oak Ridge National Laboratory, 2019).

  12. T. S. Byun, M. N. Gussev, T. G. Lach, M. R. McAlister, J. J. Simpson, B. E. Garrison, Y. Yamamoto, C. B. Joslin, J. K. Carver, F. A. List, R. R. Dehoff, K. A. Terrani, M. Li, X. Zhang, ORNL/TM-2020/1574 (Oak Ridge National Laboratory, 2020).

  13. T.S. Byun, D. Collins, A. Le Coq, T.G. Lach, K. Linton, M.N. Gussev, ORNL/TM-2021/2121 (Oak Ridge National Laboratory, 2021)

  14. S.M. Thompson, L. Bian, N. Shamsaei, and A. Yadollahi, Additive Manufacturing 8, 36 (2015).

    Article  Google Scholar 

  15. A.N. Jinoop, C.P. Paul, and K.S. Bindra, J. Mater.: Design and Appl. 233, 2376 (2019).

    Google Scholar 

  16. B.M. Morrow, T.J. Lienert, C.M. Knapp, J.O. Sutton, M.J. Brand, R.M. Pacheco, V. Livescu, J.S. Carpenter, and G.T. Gray, Metall. Mater. Trans. A 49, 3637 (2018).

    Article  Google Scholar 

  17. T. Ronneberg, C.M. Davies, and P.A. Hooper, Mater. Des. 189, 108481 (2020).

    Article  Google Scholar 

  18. A.J. Birnbaum, J.C. Steuben, E.J. Barrick, A.P. Iliopoulos, and J.G. Michopoulos, Addit. Manuf. 29, 100784 (2019).

    Google Scholar 

  19. U.S. Bertoli, B.E. MacDonald, and J.M. Schoenung, Mater. Sci. Eng. A 739, 109 (2019).

    Article  Google Scholar 

  20. M. Li, X. Zhang, W.Y. Chen, F. Heidet, ANL/NSE-20/12 (Argonne National Laboratory, 2020).

  21. T. Kurzynowski, K. Gruber, W. Stopyra, B. Kuźnicka, and E. Chlebus, Mater. Sci. Eng. A 718, 64 (2018).

    Article  Google Scholar 

  22. M. Li, X. Zhang, W.Y. Chen, F. Heidet, T.S. Byun, and K.A. Terrani, J. Nucl. Mater. 548, 152847 (2021).

    Article  Google Scholar 

  23. D. Kong, X. Ni, C. Dong, L. Zhang, C. Man, X. Cheng, and X. Li, Mater. Lett. 235, 1 (2019).

    Article  Google Scholar 

  24. T. Gräning, and N. Sridharan, Metals 12, 342 (2022).

    Article  Google Scholar 

  25. H. Essoussi, S. Ettaqi, and E. Essadiqi, Procedia Manufacturing 22, 129 (2018).

    Article  Google Scholar 

  26. H. Gholizadeh, The Influence of Alloying and Temperature on the Stacking-fault Energy of Iron-based Alloys, Montan Universtat Dissertation (Leoben, Austria: 2013).

  27. E. Nagy, V. Mertinger, F. Tranta, and J. Sólyom, Mater. Sci. Engi. A 378, 308 (2004).

    Article  Google Scholar 

  28. S.I. Baik, and Y.W. Kim, Materialia 10, 100677 (2020).

    Article  Google Scholar 

  29. H.C. Choi, H.C. Shin, Y.W. Chang, and T.K. Ha, Scripta Mater. 40, 1171 (1999).

    Article  Google Scholar 

  30. I.R. Souza Filho, A. Dutta, D.R. Almeida Junior, W. Lu, M.J.R. Sandim, D. Ponge, H.R.Z. Sandim, D. Raabe, Acta Mater., 197, 123 (2020).

  31. N. Bibhanshu, M.N. Gussev, and T.M. Rosseel, Mater. Charact. 178, 111218 (2021).

    Article  Google Scholar 

  32. M.N. Gussev, T.S. Byun, J.T. Busby, and C.M. Parish, Mater. Sci. Eng. A 588, 299 (2013).

    Article  Google Scholar 

  33. D. Kaoumi, and J. Liu, Mater. Sci. Engi. A 715, 73 (2018).

    Article  Google Scholar 

  34. M. Smaga, F. Walther, and D. Eifler, Mater. Sci. Engi. A 483, 394 (2008).

    Article  Google Scholar 

  35. T.H. Lee, C.S. Oh, and S.J. Kim, Scripta Mater. 58, 110 (2008).

    Article  Google Scholar 

  36. T. Byun, Acta Mater. 51, 3063 (2003).

    Article  Google Scholar 

  37. T.S. Byun, E.H. Lee, and J.D. Hunn, J. Nucl. Mater. 321, 29 (2003).

    Article  Google Scholar 

  38. N. Hashimoto, T.S. Byun, and K. Farrell, J. Nucl. Mater. 351, 295 (2006).

    Article  Google Scholar 

  39. T.S. Byun, N. Hashimoto, and K. Farrell, J. Nucl. Mater. 349, 251 (2006).

    Article  Google Scholar 

  40. S. Hashmi, G.F. Batalha, C.J. Van Tyne, B. Yilbas, Comprehensive Materials Processing, Volume 12: Thermal Engineering of Steel Alloy Systems (Elsevier, 2014).

  41. M. Khanzadeh, S. Chowdhury, M.A. Tschopp, H.R. Doude, M. Marufuzzaman, and L. Bian, IISE Trans. 51, 437 (2019).

    Article  Google Scholar 

  42. Z. Zhang, Z. Liu, and D. Wu, Addit. Manuf. 37, 101692 (2021).

    Google Scholar 

  43. Y. Chen, S. Clark, A.C.L. Leung, L. Sinclair, S. Marussi, and R. Atwood, Mater. Sci. Eng. 861, 012012 (2020).

    Google Scholar 

  44. T. Pinomaa, M. Lindroos, M. Walbrühl, N. Provatas, and A. Laukkanen, Acta Mater. 184, 1 (2020).

    Article  Google Scholar 

  45. S. Ananthan, and E.O. Hall, Acta Metall. Mater. 39, 3153 (1991).

    Article  Google Scholar 

  46. Z. Shang, J. Ding, C. Fan, M. Song, J. Li, Q. Li, S. Xue, K.T. Hartwig, and X. Zhang, Acta Mater. 169, 209 (2019).

    Article  Google Scholar 

  47. G. Krauss, Metall. Mater. Trans. B 32B, 205 (2001).

    Article  Google Scholar 

  48. E. Garlea, H. Choo, C.C. Sluss, M.R. Koehler, R.L. Bridges, X. Xiao, Y. Ren, and B.H. Jared, Mater. Sci. Eng. A 763, 138032 (2019).

    Article  Google Scholar 

  49. Austenitic Stainless Steels, Stainless Steels for Design Engineers (ASM International, 2008).

  50. T.S. Byun, and K. Farrell, Acta Mater. 52, 1597 (2004).

    Article  Google Scholar 

  51. T.S. Byun, N. Hashimoto, and K. Farrell, Acta Mater. 52, 3889 (2004).

    Article  Google Scholar 

  52. T.S. Byun, K. Farrell, and N. Hashimoto, J. Nucl. Mater. 329–333, 998 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the US Department of Energy, Laboratory Directed Research and Development program and Fusion Materials program at Oak Ridge National Laboratory (ORNL), under contract DE-AC05-00OR22725 with UT-Battelle, LLC. Test materials (compositionally graded alloys) were produced at the Manufacturing Demonstration Facility (MDF) at ORNL: we would like to give special thanks to Mr. Brian Jordan for his effort in production of the graded material blocks. Special thanks also go to the internal reviewers Tim Graening and David Collins for their comments and suggestions that help greatly improving this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thak Sang Byun.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byun, T.S., Gussev, M.N., Bibhanshu, N. et al. Deformation Mechanism Transition in Additively Manufactured Compositionally Graded Fe-Base Alloys. JOM 74, 4042–4058 (2022). https://doi.org/10.1007/s11837-022-05401-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05401-1

Navigation