Skip to main content
Log in

Fatigue Crack Growth Behavior of Nitrogen-Alloyed Low-Carbon Austenitic Stainless Steel at Room Temperature

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Fatigue crack growth (FCG) behavior of SS 316L with different nitrogen contents (0.078 wt.% to 0.22 wt.%) was studied at room temperature under different load ratios (R) 0.1 to 0.7. The variation of crack growth rate (da/dN) was analyzed in terms of crack growth mechanism operating under both regimes. With variation of nitrogen content, variation of ΔKth was observed; 0.12 (12 N) and 0.14 (14 N) variants showing minimum and maximum ΔKth, respectively. This was correlated with changes in stacking fault energy (SFE) of the material with nitrogen content. The influence of other factors such as tensile strength, modulus, and microstructure, along with substructural changes during crack growth, were studied. In the 14 N nitrogen variant, the propensity for planar slip and better slip reversibility, originating from a relatively lower SFE, were attributed to a higher ΔKth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F.B. Pickering, in High Nitrogen Steel, edited by A.H.J. Foct (The Institute of Metal, London, 1988), pp. 19–30.

  2. J.W. Simmons, Mater. Sci. Eng. A 207, 159 (1996).

    Article  Google Scholar 

  3. S.L. Mannan, S.C. Chetal, B. Raj, and S.B. Bhoje, Trans. Indian Inst. Met. 56, 155 (2003).

    Google Scholar 

  4. M.O. Speidel, Materwiss. Werksttech. 37, 875 (2006).

    Article  Google Scholar 

  5. K.H. Lo, C.H. Shek, and J.K.L. Lai, Mater. Sci. Eng. R Rep. 65, 39 (2009).

    Article  Google Scholar 

  6. V.S. Srinivasan, B.K. Choudhary, M.D. Mathew, and T. Jayakumar, Mater. High Temp. 29, 41 (2012).

    Article  Google Scholar 

  7. A. Toppo, V. Shankar, R.P. George, and J. Philip, Corrosion 76, 591 (2020).

    Article  Google Scholar 

  8. V.G. Gavriljuk, Metallofiz. i Noveishie Tekhnologii 38, 67 (2016).

    Article  Google Scholar 

  9. L. Norström, Met. Sci. 11, 208 (1977).

    Article  Google Scholar 

  10. V. Gavriljuk, Y. Petrov, and B. Shanina, Scr. Mater. 55, 537 (2006).

    Article  Google Scholar 

  11. H. Berns, V.G. Gavriljuk, and S. Riedner, High Interstitial Stainless Austenitic Steels, 1st edn. (Springer, Berlin, 2013), pp 45–47.

    Book  Google Scholar 

  12. V. Ganesan, M.D. Mathew, and K.B.S. Rao, Mater. Sci. Technol. 25, 614 (2009).

    Article  Google Scholar 

  13. V. Ganesan, K. Laha, P. Parameswaran, M. Nandagopal, and M.D. Mathew, Mater. High Temp. 32, 438 (2015).

    Article  Google Scholar 

  14. G.V. Prasad Reddy, R. Sandhya, S. Sankaran, and M.D. Mathew, Metall. Mater. Trans. 45, 5057 (2014).

    Article  Google Scholar 

  15. G.V. Prasad Reddy, R. Kannan, K. Mariappan, R. Sandhya, S. Sankaran, and K. Bhanu Sankara Rao, Int. J. Fatigue 81, 299 (2015).

    Article  Google Scholar 

  16. M.D. Mathew, K. Laha, and V. Ganesan, Mater. Sci. Eng. A 535, 76 (2012).

    Article  Google Scholar 

  17. V. Ganesan, M.D. Mathew, P. Parameswaran, and K. Bhanu Sankara Rao, Trans. Indian Inst. Met. 63, 417 (2010).

    Article  Google Scholar 

  18. G.V. Prasad Reddy, R. Sandhya, S. Sankaran, P. Parameswaran, and K. Laha, Mater. Des. 88, 972 (2015).

    Article  Google Scholar 

  19. M. Nani Babu, G. Sasikala, and K. Sadananda, Metall. Mater. Trans. 50, 3091 (2019).

    Article  Google Scholar 

  20. P. Paris and F. Erdogan, J. Basic Eng. 85, 528 (1963).

    Article  Google Scholar 

  21. M. Nani Babu and G. Sasikala, Int. J. Fatigue 140, 105815 (2020).

    Article  Google Scholar 

  22. G.F. Vander Voort, G.M. Lucas, and E.P. Manilova, Metallography and Microstructures, 9, (ASM Handbook, ASM International, 2004), pp. 670–700.

  23. ASTM E647−13, Standard Test Method for Measurement of Fatigue Crack Growth Rates (2014).

  24. S. Suresh, Fatigue of Materials, 2nd edn. (Cambridge University Press, Cambridge, 1991), pp 331–358.

    Google Scholar 

  25. R.O. Ritchie, Met. Sci. 11, 368 (1977).

    Article  Google Scholar 

  26. R.O. Ritchie, Int. Met. Rev. 24, 205 (1979).

    Article  Google Scholar 

  27. J.M. Barsom, E.J. Imhof, and S.T. Rolfe, Eng. Fract. Mech. 2, 301 (1971).

    Article  Google Scholar 

  28. S. Kibey, J.B. Liu, M.J. Curtis, D.D. Johnson, and H. Sehitoglu, Acta Mater. 54, 2991 (2006).

    Article  Google Scholar 

  29. D.N. Lal, Eng. Fract. Mech. 54, 761 (1996).

    Article  Google Scholar 

  30. D. Qi-Xun, W. An-Dong, C. Xiao-Nong, and L. Xin-Min, Chin. Phys. 11, 596 (2002).

    Article  Google Scholar 

  31. G. Meric de Bellefon, J.C. van Duysen, and K. Sridharan, J. Nucl. Mater. 492, 227 (2017).

    Article  Google Scholar 

  32. Z.Y. Wang, D. Han, and X.W. Li, Mater. Sci. Eng. A 679, 484 (2017).

    Article  Google Scholar 

  33. V. Gerold and H.P. Karnthaler, Acta Metall. 37, 2177 (1989).

    Article  Google Scholar 

  34. Q. Dai, Z. Yuan, X. Chen, and K. Chen, Mater. Sci. Eng. A 517, 257 (2009).

    Article  Google Scholar 

  35. J.H. Bulloch, Theor. Appl. Fract. Mech. 18, 15 (1992).

    Article  Google Scholar 

  36. L.H. Burck and J. Weertman, Metall. Trans. A 7, 257 (1976).

    Article  Google Scholar 

  37. G.E. Dieter, Mechanical Metallurgy, 3rd edn. (McGraw-Hill, New York, 2013), pp 135–159.

    Google Scholar 

  38. J.L. Robinson and C.J. Beevers, Met. Sci. J. 7, 153 (1973).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nani Babu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duraipandi, R., Nani Babu, M. & Moitra, A. Fatigue Crack Growth Behavior of Nitrogen-Alloyed Low-Carbon Austenitic Stainless Steel at Room Temperature. JOM 75, 478–487 (2023). https://doi.org/10.1007/s11837-022-05622-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05622-4

Navigation