Skip to main content
Log in

Genetics and molecular biology of chronic lymphocytic leukemia

  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

B cell chronic lymphocytic leukemia (CLL) is a clinically heterogeneous disease characterized by accumulation of malignant CD5+ B cells. Multiple molecular events likely contribute to malignant transformation; no single genetic abnormality or event has been shown to be responsible for development of the disease. Significant advances have recently been made towards understanding the genetic and molecular basis for the etiology and clinical course of CLL. Our current understanding is only now bringing us to the point where we can use this information in management and in developing new therapies for patients with CLL. Familial clustering of CLL cases is not uncommon and implicates a genetic basis for the development of the disease in some individuals. Potential interventions in this instance could employ strategies of gene transfer or gene therapy to correct genetic defects or strategies of chemoprevention, none of which is currently under investigation. Greater potential for therapeutic intervention rests with targeting molecular aberrations and altered gene expression in leukemia cells, for example, over expression of the anti-apoptotic proteins of the Bcl-2 family. CLL follows a variable clinical course, with some patients not needing treatment for many years and responding to therapy completely and repeatedly. Other patients have rapidly progressive disease that is refractory to currently available agents and they quickly succumb to their disease. One major recent advance has been the identification of molecular and genetic prognostic factors that can be used in early-stage patients to identify those likely to rapidly progress. This affords the opportunity to tailor management for patients based on the predictable aggressiveness of their disease. Molecular and genetic findings are increasingly influencing management decisions in CLL. Bone marrow transplantation may be considered for a patient with unfavorable prognostic features earlier than for a patient with favorable features and same clinical stage of disease. It is likely that these genetic and molecular-based factors will be targets of new treatment modalities that fundamentally change the management of this disease. In this review we detail the current understanding of the genetics and molecular biology of CLL and introduce potentials for therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Kuppers R, Klein U, Hansmann ML, Rajewsky K: Cellular origin of human B cell lymphomas. N Engl J Med 1999, 341:1520–1529.

    Article  PubMed  CAS  Google Scholar 

  2. Vogelstein B, Lane D, Levine AJ: Surfing the p53 network. Nature 2000, 408:307–310.

    Article  PubMed  CAS  Google Scholar 

  3. Jenuwein T, Allis CD: Translating the histone code. Science 2001, 293:1074–1080.

    Article  PubMed  CAS  Google Scholar 

  4. Ahuja N, Li Q, Mohan AL, et al.: Aging and DNA methylation in colorectal mucosa and cancer. Cancer Res 1998, 58:5489–5494.

    PubMed  CAS  Google Scholar 

  5. Haslinger C, Schweifer N, Stilgenbauer S, et al.: Microarray gene expression profiling of B cell chronic lymphocytic leukemia subgroups defined by genomic aberrations and VH mutation status. J Clin Oncol 2004, 22:3937–3949.

    Article  PubMed  CAS  Google Scholar 

  6. Juliusson G, Gahrton G: Cytogenetics in CLL and related disorders. Baillieres Clin Haematol 1993, 6:821–848.

    Article  PubMed  CAS  Google Scholar 

  7. Mayr C, Kofler DM, Buhmann R, et al.: High incidence of translocations in CLL: a new prognostic marker for infavorable survival outcome. Blood 2004, 11:104.

    Google Scholar 

  8. Dohner H, Stilgenbauer S, Benner A, et al.: Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000, 343:1910–1916. A large study using a comprehensive panel of FISH probes, which demonstrated both the high frequency of recurrent genomic abnormalities in CLL and their prognostic significance.

    Article  PubMed  CAS  Google Scholar 

  9. Schwaenen C, Nessling M, Wessendorf S, et al.: Automated array-based genomic profiling in chronic lymphocytic leukemia: development of a clinical tool and discovery of recurrent genomic alterations. Proc Natl Acad Sci U S A 2004, 101:1039–1044.

    Article  PubMed  CAS  Google Scholar 

  10. Stilgenbauer S, Nickolenko J, Wilhelm J, et al.: Expressed sequences as candidates for a novel tumor suppressor gene at band 13q14 in B cell chronic lymphocytic leukemia and mantle cell lymphoma. Oncogene 1998, 16:1891–1897.

    Article  PubMed  CAS  Google Scholar 

  11. Dohner H, Stilgenbauer S, Dohner K, et al.: Chromosome aberrations in B cell chronic lymphocytic leukemia: reassessment based on molecular cytogenetic analysis. J Mol Med 1999, 77:266–281.

    Article  PubMed  CAS  Google Scholar 

  12. Liu Y, Szekely L, Grander D, et al.: Chronic lymphocytic leukemia cells with allelic deletions at 13q14 commonly have one intact RB1 gene: evidence for a role of an adjacent locus. Proc Natl Acad Sci USA 1993, 90:8697–8701.

    Article  PubMed  CAS  Google Scholar 

  13. Rondeau G, Moreau I, Bezieau S, et al.: Comprehensive analysis of a large genomic sequence at the putative B cell chronic lymphocytic leukaemia (B-CLL) tumour suppresser gene locus. Mutat Res 2001, 458:55–70.

    PubMed  CAS  Google Scholar 

  14. Mabuchi H, Fujii H, Calin G, et al.: Cloning and characterization of CLLD6, CLLD7, and CLLD8, novel candidate genes for leukemogenesis at chromosome 13q14, a region commonly deleted in B cell chronic lymphocytic leukemia. Cancer Res 2001, 61:2870–2877.

    PubMed  CAS  Google Scholar 

  15. Calin GA, Dumitru CD, Shimizu M, et al.: Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002, 99:15524–15529.

    Article  PubMed  CAS  Google Scholar 

  16. Stankovic T, Stewart GS, Fegan C, et al.: Ataxia telangiectasia mutated-deficient B cell chronic lymphocytic leukemia occurs in pregerminal center cells and results in defective damage response and unrepaired chromosome damage. Blood 2002, 99:300–309. This study showed that ATM mutations in CLL were highly correlated with the unmutated IgVH subtype. The loss of ATM function resulted in a defective DNA damage response which may be important in the pathogenesis of CLL.

    Article  PubMed  CAS  Google Scholar 

  17. Taylor AM, Metcalfe JA, Thick J, Mak YF: Leukemia and lymphoma in ataxia telangiectasia. Blood 1996, 87:423–438.

    PubMed  CAS  Google Scholar 

  18. Stilgenbauer S, Schaffner C, Litterst A, et al.: Biallelic mutations in the ATM gene in T prolymphocytic leukemia. Nat Med 1997, 3:1155–1159.

    Article  PubMed  CAS  Google Scholar 

  19. Schaffner C, Idler I, Stilgenbauer S, et al.: Mantle cell lymphoma is characterized by inactivation of the ATM gene. Proc Natl Acad Sci USA 2000, 97:2773–2778.

    Article  PubMed  CAS  Google Scholar 

  20. Stankovic T, Weber P, Stewart G, et al.: Inactivation of ataxia telangiectasia mutated gene in B cell chronic lymphocytic leukaemia. Lancet 1999, 353:26–29.

    Article  PubMed  CAS  Google Scholar 

  21. Bullrich F, Rasio D, Kitada S, et al.: ATM mutations in B cell chronic lymphocytic leukemia. Cancer Res 1999, 59:24–27.

    PubMed  CAS  Google Scholar 

  22. Schaffner C, Stilgenbauer S, Rappold GA, et al.: Somatic ATM mutations indicate a pathogenic role of ATM in B cell chronic lymphocytic leukemia. Blood 1999, 94:748–753.

    PubMed  CAS  Google Scholar 

  23. Dohner H, Stilgenbauer S, James MR, et al.: 11q deletions identify a new subset of B cell chronic lymphocytic leukemia characterized by extensive nodal involvement and inferior prognosis. Blood 1997, 89:2516–2522.

    PubMed  CAS  Google Scholar 

  24. Dewald GW, Brockman SR, Paternoster SF, et al.: Chromosome anomalies detected by interphase fluorescence in situ hybridization: correlation with significant biological features of B cell chronic lymphocytic leukaemia. Br J Haematol 2003, 121:287–295.

    Article  PubMed  Google Scholar 

  25. Merup M, Juliusson G, Wu X, et al.: Amplification of multiple regions of chromosome 12, including 12q13-15, in chronic lymphocytic leukaemia. Eur J Haematol 1997, 58:174–180.

    Article  PubMed  CAS  Google Scholar 

  26. Matutes E, Oscier D, Garcia-Marco J, et al.: Trisomy 12 defines a group of CLL with atypical morphology: correlation between cytogenetic, clinical and laboratory features in 544 patients. Br J Haematol 1996, 92:382–388.

    Article  PubMed  CAS  Google Scholar 

  27. Krober A, Scherer K, Leupolt E, et al.: p53 aberrations in B CLL predict survival and are associated with in vivo resistance to therapy [abstract]. Blood 2000, 96(Suppl 1):A4463.

    Google Scholar 

  28. Lin K, Sherrington PD, Dennis M, et al.: Relationship between p53 dysfunction, CD38 expression, and IgV(H) mutation in chronic lymphocytic leukemia. Blood 2002, 100:1404–1409.

    Article  PubMed  CAS  Google Scholar 

  29. Byrd JC, Smith L, Hackbarth ML, et al.: Interphase cytogenetic abnormalities in chronic lymphocytic leukemia may predict response to rituximab. Cancer Res 2003, 63:36–38.

    PubMed  CAS  Google Scholar 

  30. Dohner H, Fischer K, Bentz M, et al.: p53 gene deletion predicts for poor survival and non-response to therapy with purine analogs in chronic B cell leukemias. Blood 1995, 85:1580–1589.

    PubMed  CAS  Google Scholar 

  31. Stilgenbauer S, Dohner H: Campath-1H-induced complete remission of chronic lymphocytic leukemia despite p53 gene mutation and resistance to chemotherapy. N Engl J Med 2002, 347:452–453.

    Article  PubMed  Google Scholar 

  32. Lozanski G, Heerema NA, Flinn IW, et al.: Alemtuzumab is an effective therapy for chronic lymphocytic leukemia with p53 mutations and deletions. Blood 2004, 103:3278–3281. In this study the response rate of 36 fludarabine-refractory CLL patients to alemtuzumab was not adversely affected by the presence of p53 mutations or deletions. The findings support a greater role for this agent in this poor prognostic drugresistant subset of CLL.

    Article  PubMed  CAS  Google Scholar 

  33. McKeithan TW, Takimoto GS, Ohno H, et al.: BCL3 rearrangements and t(14;19) in chronic lymphocytic leukemia and other B cell malignancies: a molecular and cytogenetic study. Genes Chromosomes Cancer 1997, 20:64–72.

    Article  PubMed  CAS  Google Scholar 

  34. Dyer MJ, Zani VJ, Lu WZ, et al.: BCL2 translocations in leukemias of mature B cells. Blood 1994, 83:3682–3688.

    PubMed  CAS  Google Scholar 

  35. Ambros V: Micro-RNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell 2003, 113:673–676.

    Article  PubMed  CAS  Google Scholar 

  36. Calin GA, Sevignani C, Dumitru CD, et al.: Human micro-RNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 2004, 101:2999–3004.

    Article  PubMed  CAS  Google Scholar 

  37. Calin GA, Liu CG, Sevignani C, et al.: Micro-RNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 2004, 101:11755–11760. A microarray analysis that identified significant differences in the micro-RNA expression between CLL cells and normal CD5+ B cells and also between different prognostic subtypes of CLL. This suggests that micro-RNAs may be another important prognostic factor and play a role in the biology of CLL.

    Article  PubMed  CAS  Google Scholar 

  38. Muramatsu M, Kinoshita K, Fagarasan S, et al.: Class switch recombination and hypermutation require activationinduced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 2000, 102:553–563.

    Article  PubMed  CAS  Google Scholar 

  39. Damle RN, Wasil T, Fais F, et al.: IgV-gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999, 94:1840–1847.

    PubMed  CAS  Google Scholar 

  40. Hamblin TJ, Davis Z, Gardiner A, et al.: Unmutated IgV(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999, 94:1848–1854.

    PubMed  CAS  Google Scholar 

  41. McCarthy H, Wierda WG, Barron LL, et al.: High expression of activation-induced cytidine deaminase (AID) and splice variants is a distinctive feature of poorprognosis chronic lymphocytic leukemia. Blood 2003, 101:4903–4908.

    Article  PubMed  CAS  Google Scholar 

  42. Krober A, Seiler T, Benner A, et al.: V(H)-mutation status, CD38 expression level, genomic aberrations, and survival in chronic lymphocytic leukemia. Blood 2002, 100:1410–1416.

    PubMed  CAS  Google Scholar 

  43. Damle RN, Batliwalla FM, Ghiotto F, et al.: Telomere length and telomerase activity delineate distinctive replicative features of the B CLL subgroups defined by immunoglobulin V-gene mutations. Blood 2004, 103:375–382.

    Article  PubMed  CAS  Google Scholar 

  44. Borche L, Lim A, Binet JL, Dighiero G: Evidence that CLL B lymphocytes are frequently committed to production of natural autoantibodies. Blood 1990, 76:562–569.

    PubMed  CAS  Google Scholar 

  45. Fais F, Ghiotto F, Hashimoto S, et al.: Chronic lymphocytic leukemia—B cells express restricted sets of mutated and unmutated antigen receptors. J Clin Invest 1998, 102:1515–1525.

    Article  PubMed  CAS  Google Scholar 

  46. Tobin G, Thunberg U, Johnson A, et al.: Chronic lymphocytic leukemias utilizing the VH3-21 gene display highly restricted Vlambda2-14 gene use and homologous CDR3s: implicating recognition of a common antigen epitope. Blood 2003, 101:4952–4957.

    Article  PubMed  CAS  Google Scholar 

  47. Oscier DG, Gardiner AC, Mould SJ, et al.: Multivariate analysis of prognostic factors in CLL: clinical stage, IGVH gene mutational status, and loss or mutation of the p53 gene are independent prognostic factors. Blood 2002, 100:1177–1184. An analysis of prognostic factors in 205 CLL patients confirming the significance of IgVH mutation status. While some genomic aberrations lost significance with multivariate analysis, the adverse affect of p53 loss or mutation was maintained regardless of the IgVH mutation status.

    PubMed  CAS  Google Scholar 

  48. Rush LJ, Raval A, Funchain P, et al.: Epigenetic profiling in chronic lymphocytic leukemia reveals novel methylation targets. Cancer Res 2004, 64:2424–2433.

    Article  PubMed  CAS  Google Scholar 

  49. Byrd JC, Shinn C, Ravi R, et al.: Depsipeptide (FR901228): a novel therapeutic agent with selective, in vitro activity against human B cell chronic lymphocytic leukemia cells. Blood 1999, 94:1401–1408.

    PubMed  CAS  Google Scholar 

  50. Rosenwald A, Alizadeh AA, Widhopf G, et al.: Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med 2001, 194:1639–1647.

    Article  PubMed  CAS  Google Scholar 

  51. Klein U, Tu Y, Stolovitzky GA, et al.: Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J Exp Med 2001, 194:1625–1638.

    Article  PubMed  CAS  Google Scholar 

  52. Wiestner A, Rosenwald A, Barry TS, et al.: ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood 2003, 12:4944–4951. A gene expression profiling study of 107 patients showing that ZAP-70 is the gene that best distinguishes CLL cases with mutated and unmutated IgVH genes. High ZAP-70 expression correlated with the unmutated CLL subtype. In four mutated cases, a discordantly high ZAP-70 was associated with a more aggressive clinical behavior.

    Article  CAS  Google Scholar 

  53. Crespo M, Bosch F, Villamor N, et al.: ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med 2003, 348:1764–1775. Detection of ZAP-70 by flow cytometry was shown to correlate with IgVH mutation status and to predict disease progression. This method has cost and convenience advantages over assessment of IgVH mutation status and is becoming a widely accepted prognostic test.

    Article  PubMed  CAS  Google Scholar 

  54. Chen L, Widhopf G, Huynh L, et al.: Expression of ZAP-70 is associated with increased B cell receptor signaling in chronic lymphocytic leukemia. Blood 2002, 100:4609–4614.

    Article  PubMed  CAS  Google Scholar 

  55. Rassenti LZ, Huynh L, Toy TL, et al.: ZAP-70 compared with immunoglobulin heavy-chain gene mutation status as a predictor of disease progression in chronic lymphocytic leukemia. N Engl J Med 2004, 351:893–901.

    Article  PubMed  CAS  Google Scholar 

  56. Virgilio L, Isobe M, Narducci MG, et al.: Chromosome walking on the TCL1 locus involved in T cell neoplasia. Proc Natl Acad Sci U S A 1993, 90:9275–9279.

    Article  PubMed  CAS  Google Scholar 

  57. Narducci MG, Pescarmona E, Lazzeri C, et al.: Regulation of TCL1 expression in B- and T cell lymphomas and reactive lymphoid tissues. Cancer Res 2000, 60:2095–2100.

    PubMed  CAS  Google Scholar 

  58. Said JW, Hoyer KK, French SW, et al.: TCL1 oncogene expression in B cell subsets from lymphoid hyperplasia and distinct classes of B cell lymphoma. Lab Invest 2001, 81:555–564.

    PubMed  CAS  Google Scholar 

  59. Yuille MR, Condie A, Stone EM, et al.: TCL1 is activated by chromosomal rearrangement or by hypomethylation. Genes Chromosomes Cancer 2001, 30:336–341.

    Article  PubMed  CAS  Google Scholar 

  60. R Bichi, Shinton SA, Martin ES, et al.: Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc Natl Acad Sci U S A 2002, 99:6955–6960. This paper describes the characteristics of transgenic mice with TCL1 expression targeted to B cells. These mice develop a disease resembling human CLL, supporting a pathogenic role for TCL1 in CLL and providing a valuable model for future research.

    Article  PubMed  CAS  Google Scholar 

  61. Laine J, Kunstle G, Obata T, et al.: The protooncogene TCL1 is an Akt kinase coactivator. Mol Cell 2000, 6:395–407.

    Article  PubMed  CAS  Google Scholar 

  62. Pekarsky Y, Koval A, Hallas C, et al.: TCL1 enhances Akt kinase activity and mediates its nuclear translocation. Proc Natl Acad Sci U S A 2000, 97:3028–3033.

    Article  PubMed  CAS  Google Scholar 

  63. Datta SR, Brunet A, Greenberg ME: Cellular survival: a play in three Akts. Genes Dev 1999, 13:2905–2927.

    Article  PubMed  CAS  Google Scholar 

  64. Wickremasinghe RG, Ganeshaguru K, Jones DT, et al.:Autologous plasma activates Akt/protein kinase B and enhances basal survival and resistance to DNA damage-induced apoptosis in B chronic lymphocytic leukaemia cells. Br J Haematol 2001, 114:608–615.

    Article  PubMed  CAS  Google Scholar 

  65. Decker T, Hipp S, Ringshausen I, et al.: Rapamycininduced G1 arrest in cycling B CLL cells is associated with reduced expression of cyclin D3, cyclin E, cyclin A, and survivin. Blood 2003, 101:278–285.

    Article  PubMed  CAS  Google Scholar 

  66. Sato S, Fujita N, Tsuruo T: Interference with PDK1-Akt survival signaling pathway by UCN-01 (7-hydroxystaurosporine). Oncogene 2002, 21:1727–1738.

    Article  PubMed  CAS  Google Scholar 

  67. Lee HH, Dadgostar H, Cheng Q, et al.: NF-ΚB-mediated upregulation of Bcl-x and Bfl-1/A1 is required for CD40 survival signaling in B lymphocytes. Proc Natl Acad Sci U S A 1999, 96:9136–9141.

    Article  PubMed  CAS  Google Scholar 

  68. Stroka DM, Badrichani AZ, Bach FH, Ferran C: Overexpression of A1, an NF-ΚB-inducible anti-apoptotic bcl gene, inhibits endothelial cell activation. Blood 1999, 93:3803–3810.

    PubMed  CAS  Google Scholar 

  69. Furman RR, Asgary Z, Mascarenhas JO, et al.: Modulation of NF-ΚB activity and apoptosis in chronic lymphocytic leukemia B cells. J Immunol 2000, 164:2200–2206.

    PubMed  CAS  Google Scholar 

  70. Panwalkar A, Verstovsek S, Giles F: Nuclear factor-ΚB modulation as a therapeutic approach in hematologic malignancies. Cancer 2004, 100:1578–1589.

    Article  PubMed  CAS  Google Scholar 

  71. Gottardi D, Alfarano A, De Leo AM, et al.: In leukaemic CD5+ B cells the expression of BCL-2 gene family is shifted toward protection from apoptosis. Br J Haematol 1996, 94:612–618.

    Article  PubMed  CAS  Google Scholar 

  72. Laytragoon-Lewin N, Kashuba V, Mellstedt H, Klein G:BCL-2 rearrangement detected by pulsed-field gel electrophoresis (PFGF) in B chronic lymphocytic leukemia (CLL) cells. Int J Cancer 1998, 76:909–912.

    Article  PubMed  CAS  Google Scholar 

  73. Hanada M, Delia D, Aiello A, et al.: BCL-2 gene hypomethylation and high-level expression in B cell chronic lymphocytic leukemia. Blood 1993, 82:1820–1828.

    PubMed  CAS  Google Scholar 

  74. Kitada S, Andersen J, Akar S, et al.: Expression of apoptosisregulating proteins in chronic lymphocytic leukemia: correlations with In vitro and In vivo chemoresponses. Blood 1998, 91:3379–3389.

    PubMed  CAS  Google Scholar 

  75. Pepper C, Thomas A, Hoy T, et al.: Antisense-mediated suppression of BCL-2 highlights its pivotal role in failed apoptosis in B cell chronic lymphocytic leukaemia. Br J Haematol 1999, 107:611–615.

    Article  PubMed  CAS  Google Scholar 

  76. Kitada S, Leone M, Sareth S, et al.: Discovery, characterization, and structure-activity relationships studies of proapoptotic polyphenols targeting B cell lymphocyte/leukemia-2 proteins. J Med Chem 2003, 46:4259–4264.

    Article  PubMed  CAS  Google Scholar 

  77. Leone M, Zhai D, Sareth S, et al.: Cancer prevention by tea polyphenols is linked to their direct inhibition of antiapoptotic BCL-2-family proteins. Cancer Res 2003, 63:8118–8121.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carney, D.A., Wierda, W.G. Genetics and molecular biology of chronic lymphocytic leukemia. Curr. Treat. Options in Oncol. 6, 215–225 (2005). https://doi.org/10.1007/s11864-005-0005-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-005-0005-2

Keywords

Navigation